Solving Exponential Diophantine Equations Using Lattice Basis Reduction Algorithms

B. M. M. DE WEGER*

Mathematisch Instituut, Rijks Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands

Communicated by M. Waldschmidt

Received June 5, 1986

Let S be the set of all positive integers with prime divisors from a fixed finite set of primes. Algorithms are given for solving the diophantine inequality $0 < x - y < y^{\delta}$ in x, $y \in S$ for fixed $\delta \in (0, 1)$, and for the diophantine equation x + y = z in x, y, $z \in S$. The method is based on multi-dimensional diophantine approximation, in the real and p-adic case, respectively. The main computational tool is the L^3 -Basis Reduction Algorithm. Elaborate examples are presented. © 1987 Academic Press. Inc.

1. INTRODUCTION

In 1981, L. Lovász invented an algorithm for computing a reduced (i.e., nearly orthogonal) basis of an arbitrary lattice in \mathbb{R}^n from a known basis of the lattice. It has a surprisingly good theoretical complexity (polynomial time), and also performs very well in practice. This algorithm, together with an application to the factorization of polynomials, is described in Lenstra *et al.* [9]. It has several other interesting applications, such as in public-key cryptography (cf. Lagarias and Odlyzko [8]), and in the disproof of the Mertens conjecture (cf. Odlyzko and te Riele [13]). We shall refer to the algorithm as the " L^3 -Basis Reduction Algorithm," (L^3 -BRA).

The L^3 -BRA can also be used for solving multi-dimensional diophantine approximation problems, as Lenstra *et al.* already indicated [9, p. 525]. In the present paper it is shown that this enables us to find all solutions of certain exponential diophantine equations and inequalities in a routine manner. As is well known, many types of diophantine problems are associated to linear forms in logarithms of algebraic numbers (see, e.g., Baker [3, Chap. 4], Shorey and Tijdeman [18], Stroeker and Tijdeman [20, pp. 343–353]). Namely, for any large solution of the diophantine problem some linear form in logarithms is extremely close to zero. The Gelfond-Baker method provides effectively computable (and in many cases

^{*} Present address: Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

explicitly computed) lower bounds for the absolute values of such linear forms. Thus, explicit upper bounds for the solutions of many diophantine problems can be obtained. The bounds that are found in this way are so large that enumeration of the remaining possibilities is practically impossible. However, it is generally assumed that the bounds are far from the actual largest solution. Therefore it is worthwile to search for methods to reduce the found upper bounds.

If the linear form in logarithms under consideration has only two terms, a simple method applies, based on continued fractions. For example, Cijsouw, Korlaar, and Tijdeman (Appendix to Stroeker and Tijdeman [20]) found in this way all solutions of the diophantine inequality

$$|p^{x} - q^{y}| < p^{\delta x} \tag{1.1}$$

for all primes p, q with p < q < 20, and $\delta = \frac{1}{2}$. In Section 4.B we extend this result for many more values of p, q, and $\delta = \frac{9}{10}$.

A natural generalization of (1.1) is the following problem. Let S be the set of all positive integers composed of primes from a fixed finite set $\{p_1,...,p_t\}$, where $t \ge 2$, and let $\delta \in (0, 1)$. Then find all solutions of the diophantine inequality

$$0 < x - v < v^{\delta} \tag{1.2}$$

in x, $y \in S$. Putting $x/y = p_1^{x_1} \cdots p_t^{x_t}$, the corresponding linear form in logarithms is

$$\Lambda = x_1 \log p_1 + \dots + x_t \log p_t.$$

The continued fraction method applies only for t = 2. For $t \ge 3$, multidimensional continued fraction algorithms are available (cf. Brentjes [5]), but they are not useful for our purposes. In Section 4.C we shall show that the L^3 -BRA leads to substantial improvements of the upper bounds for (1.2). Usually the new bound is of the size of the logarithm of the initial bound. For t = 6, $\{p_1, ..., p_6\} = \{2, 3, 5, 7, 11, 13\}$, $\delta = \frac{1}{2}$, we show in detail how (1.2) can be solved completely with this method.

If the linear form is inhomogeneous of the form

$$\Lambda = x_1 \log \alpha_1 + \cdots + x_n \log \alpha_n + \log \alpha_{n+1},$$

it can of course be made homogeneous by introducing the variable x_{n+1} as coefficient of the last term. We may then solve this (n+1)-dimensional approximation problem, and select all solutions with $x_{n+1} = 1$. There is, however, a different approach, which may be faster. See Baker and Davenport [4] for n = 2, and Ellison [6] for n > 2. It is then needed to find good simultaneous approximations p_i/q to $\log \alpha_i/\log \alpha_n$ (i = 1,..., n-1). Lenstra

et al. [9, p. 525] have indicated how the L^3 -BRA can be used to find such approximations. We do not work this out in the present paper.

Up to now we have only considered real linear forms in logarithms. There is a *p*-adic counterpart of the Gelfond-Baker theory, which provides lower bounds for the *p*-adic values of linear forms in *p*-adic logarithms of algebraic numbers. It is therefore a natural problem to devise p-adic analogues of the diophantine approximation methods sketched above. The simplest case is that of an inhomogeneous form with only one variable, such as

$$\Lambda = x \log_p \alpha_1 + \log_p \alpha_2.$$

Then it suffices to compute the *p*-adic expansion of $\log_p \alpha_2/\log_p \alpha_1$ far enough. See Wagstaff [21], Pethö and de Weger [14], and de Weger [24]. In the case of a form with two terms, such as

$$A = x_1 \log_p \alpha_1 + x_2 \log_p \alpha_2$$

a practical *p*-adic analogue of the real continued fraction algorithm is needed. Such an algorithm was first formulated by Mahler [11, Chap. 4]. A similar algorithm has been studied by de Weger [23] in the context of *p*-adic approximation lattices. See Agrawal *et al.* [1] for an application to a Thue-Mahler equation. We shall show in Section 5.C how to solve

$$p_1^{x_1} + p_2^{x_2} = w p_3^{x_3} \tag{1.3}$$

for fixed p_1, p_2, p_3, w using this algorithm. A natural generalization of (1.3) is the diophantine equation

$$x + y = z \tag{1.4}$$

in x, y, $z \in S$, with S as above. We may assume gcd(x, y, z) = 1. Put $p = p_{i}$, and suppose $p \mid z$. Then $p \nmid xy$. Put $x/y = p_1^{x_1} \cdots p_{t-1}^{x_{t-1}}$. Then we have the *p*-adic linear form in logarithms

$$\Lambda = x_1 \log_p p_1 + \cdots + x_{t-1} \log_p p_{t-1}.$$

The concept of approximation lattices of p-adic numbers, as introduced in [23], can be generalized to the multi-dimensional case, as we shall see in Section 5.B. Then we can apply the L^3 -BRA. In Section 5.D we show how this can be used to solve (1.4) explicitly. We give details for t = 6, $\{p_1, ..., p_6\} = \{2, 3, 5, 7, 11, 13\}$. This generalizes the results of Alex [2], who gave a complete solution of (1.4) for t = 4, $\{p_1, ..., p_4\} = \{2, 3, 5, 7\}$ by elementary arguments. The case where z has only one prime divisor was treated by Rumsey and Posner [16], also by elementary means.

Many diophantine equations, such as the Thue equation, the Thue-

Mahler equation, the hyperelliptic equation and the Mordell equation, lead to linear forms in logarithms similar to those described above. These equations differ from our examples (1.2) and (1.4) in that the path from the equation to the linear form in logarithms is not as straightforward; it leads through some algebraic number theory. This clearly does not affect the applicability of our approximation methods for reducing upper bounds, since they are based only on the linear forms themselves.

2. BOUNDS FOR LINEAR FORMS IN LOGARITHMS

In this section we quote the results that we use from the theory of linear forms in logarithms. We do not quote the theorems in full generality, since we apply them only for logarithms of rational integers, and for rational coefficients. The results provide lower bounds for linear forms in logarithms in the real and p-adic cases. We chose results that give completely explicit constants and lead to convenient upper bounds for the solutions of the diophantine problems we want to solve. We stress that our methods for reducing these bounds are in principle independent of the size of the bounds.

Let $p_1,..., p_n$ $(n \ge 2)$ be rational integers such that $2 \le p_1 < \cdots < p_n$, and $[\mathbb{Q}(p_1^{1/2},...,p_n^{1/2}):\mathbb{Q}] = 2^n$. Let $b_1,..., b_n \in \mathbb{Z}$, and put $B = \max_{1 \le i \le n} |b_i|$. In the real case we have the following result.

LEMMA 2.1. (Waldschmidt). Let

$$A = b_1 \log p_1 + \dots + b_n \log p_n$$

be nonzero. Put

$$V_i = \max(1, \log p_i) \qquad (i = 1, ..., n), \ \Omega = V_1 \cdots V_n,$$

$$C_1 = 2^{9n+26} n^{n+4} \Omega \log(eV_{n-1}), \qquad C_2 = C_1 \log(eV_n).$$

Then

$$|\Lambda| > \exp\{-(C_1 \log B + C_2)\}.$$

This lemma was proved by Waldschmidt [22]. In the case n = 2 a sharper bound was given by Mignotte and Waldschmidt [12]. In the *p*-adic case we have the following result:

LEMMA 2.2. (van der Poorten). Let p be a prime with $p \nmid p_i$ (i = 1,..., n). Let

$$A = b_1 \log_p p_1 + \cdots + b_n \log_p p_n$$

be nonzero. Choose μ , κ with $2/(n+1) \leq \mu \leq 2$, $0 < \kappa < \mu/2$. Put

$$V_{i} = \max(e, \log p_{i}) \qquad (i = 1, ..., n), \ \Omega = V_{1} \cdots V_{n},$$

$$G_{p} =\begin{cases} p(p-1) & \text{if } p = 2, 3\\ p-1 & \text{if } p \ge 5, \end{cases}$$

$$\varepsilon = (\mu - \kappa)/(1 + \kappa)(1 + \mu)(n + 1),$$

$$k = \max\{(16n)^{(1+1/\kappa)(n+1)}, (8/\varepsilon)^{(1+\mu)(n+1)}, 16^{1/\varepsilon}\},$$

$$C_{3} = 4(n+1)^{(n+1)} k^{(1+\mu)}(G_{p}/\log p) \Omega.$$

Then $B \leq 7$, or

$$\operatorname{ord}_{p}(\Lambda) \leq C_{3}(\log B)^{2}$$
.

This lemma follows from the proof of Theorem 2 of van der Poorten [15]. Note that we omitted the factor $n(2D^2)^{n+1}$, since D = 1; cf. van der Poorten [15, p. 35]. To save computation time we may choose μ , κ as a function of n such that C_3 is minimal, for van der Poorten's estimate $(16(n+1))^{12(n+1)}$ for $4(n+1)^{(n+1)} k^{(1+\mu)}$ (with $\mu = 2, \kappa = \frac{1}{2}$) is rather crude. Note that for n = 2 a sharper bound was by Schinzel [17]. It is expected that the constant C_3 of Lemma 2.2 can be sharpened considerably (van der Poorten, private communication).*

We also need the following simple lemma. For its proof, see Pethö and de Weger [14, Lemma 2.2].

LEMMA 2.3. Let $a \ge 0$, $h \ge 1$, $b > (e^2/h)^h$, and let $x \in \mathbb{R}$ satisfy $x \le a + b(\log x)^h$. Then

$$x < (2a^{1/h} + 2b^{1/h}\log(h^h b))^h.$$

3. The L^3 -Basis Reduction Algorithm

In this section we describe how we use the L^3 -BRA. All lattices that appear in this paper are integral lattices, that is, sublattices of \mathbb{Z}^n . In the algorithm as stated in [9, Fig. 1, p. 521], non-integral rationals may occur, even if the input consists of rational integers only. We now describe a variant of the L^3 -BRA in which only integers occur. This has the advantage of avoiding rounding-off errors.

Let $\Gamma \subset \mathbb{Z}^n$ be a lattice with basis vectors $\mathbf{b}_1, ..., \mathbf{b}_n$. Define $\mathbf{b}_i^*, \mu_{i,j}, d_i$ as in [9], (1.2), (1.3), (1.24), respectively. The d_i can be used as denominators

^{*} Note added in proof. Recently, K. R. Yu has obtained such an improvement, to be published in the Proceedings of the 1986 Durham Conference. His results lead (in Section 5) to bounds less than the square root of the bounds we derived using Lemma 2.2.

for all numbers that appear in the original algorithm [9, p. 523]. Thus, put for all relevant i, j,

$$\mathbf{c}_i = d_{i-1} \mathbf{b}_i^*, \tag{3.1}$$

$$\hat{\lambda}_{i,j} = d_j \mu_{i,j}. \tag{3.2}$$

They are integral, by [9], (1.28), (1.29). Note that, with $B_i = |\mathbf{b}_i^*|^2$.

$$d_i = d_{i-1} B_i. \tag{3.3}$$

We can now rewrite the L^3 -BRA in terms of \mathbf{c}_i , d_i , $\lambda_{i,j}$ instead of \mathbf{b}_i^* , B_i , $\mu_{i,j}$, thus eliminating all non-integral rationals. We give this variant of the algorithm in Table I. All the lines in this variant are evident from applying

TABLE I

Variant of the L^3 -Basis Reduction Algorithm

 $\begin{array}{l} \mathbf{c}_{i} := \mathbf{b}_{i}; \\ \lambda_{i,j} := (\mathbf{b}_{i}, \mathbf{c}_{j}); \\ \mathbf{c}_{i} := (d_{j}\mathbf{c}_{i} - \lambda_{i,j}\mathbf{c}_{i})/d_{j-1} \end{array} \} \text{ for } j = 1, ..., i-1; \\ d_{i} := (\mathbf{c}_{i}, \mathbf{c}_{i})/d_{i-1} \\ d_{i} := (\mathbf{c}_{i}, \mathbf{c}_{i})/d_{i-1} \end{array}$ $d_0 := 1;$ (A) k := 2:(1) perform (*) for l = k - 1; if $4d_{k-2}d_k < 3d_{k-1}^2 - 4\lambda_{k,k-1}^2$, go to (2); perform (*) for l = k - 2, ..., 1; if k = n, terminate; k := k + 1;go to (1); (2) $\begin{pmatrix} \mathbf{b}_{k-1} \\ \mathbf{b}_{k} \end{pmatrix}$:= $\begin{pmatrix} \mathbf{b}_{k} \\ \mathbf{b}_{k-1} \end{pmatrix}$; $\begin{pmatrix} \mathbf{u}_{k-1} \\ \mathbf{u}_{k} \end{pmatrix}$:= $\begin{pmatrix} \mathbf{u}_{k} \\ \mathbf{u}_{k-1} \end{pmatrix}$; $\begin{pmatrix} \lambda_{k-1,j} \\ \lambda_{k,j} \end{pmatrix} := \begin{pmatrix} \lambda_{k,j} \\ \lambda_{k-1,j} \end{pmatrix} \text{ for } j = 1, \dots, k-2;$ $\binom{\lambda_{i,k-1}}{\lambda_{i,k}} := \binom{\lambda_{i,k-1}}{d_k} + \lambda_{i,k} \binom{d_{k-2}}{-\lambda_{k,k-1}} d_{k-1} \text{ for } i = k+1, \dots, n;$ (B) (C) $d_{k-1} := (d_{k-2}d_k + \lambda_{k,k-1}^2)/d_{k-1};$ if k > 2, then k := k - 1; go to (1); (*) if $2 |\lambda_{kl}| > d_l$, then $\begin{cases} r := \text{ integer nearest to } \lambda_{k,l}/d_l; \\ \mathbf{b}_k := \mathbf{b}_k - r\mathbf{b}_l; \mathbf{u}_k := \mathbf{u}_k - r\mathbf{u}_l; \\ \lambda_{k,j} := \lambda_{k,j} - r\lambda_{l,j} \text{ for } j = 1, ..., l-1; \\ \lambda_{k,l} := \lambda_{k,l} - rd_l. \end{cases}$

(3.1), (3.2), and (3.3) to the corresponding lines in the original algorithm, except the lines (A), (B), and (C), which will be explained below.

We added a few lines to the algorithm, in order to compute the matrix of the transformation from the initial to the reduced basis. Let C be the matrix with column vectors $\mathbf{b}_1,...,\mathbf{b}_n$ (we say: the matrix associated to the basis $\mathbf{b}_1,...,\mathbf{b}_n$), and let B be the matrix associated to the reduced basis computed by the algorithm. Then we define this transformation matrix V by B = CV. More generally, let U be the matrix of a transformation from some C_0 to C, so $C = C_0 U$. Denote the column vectors of U by $\mathbf{u}_1,...,\mathbf{u}_n$. All manipulations in the algorithm done on $\mathbf{b}_1,...,\mathbf{b}_n$ are also done on $\mathbf{u}_1,...,\mathbf{u}_n$. Then the algorithm gives as output matrices B and U', such that B is associated to a reduced basis, B = CV, and U' = UV. (Note that V is not computed explicitly). Hence $B = CU^{-1}U' = C_0 U'$, so U' is the matrix of the transformation from C_0 to B. In particular, if U = I, then $C = C_0$ and U' = V.

We now explain lines (A), (B), and (C).

(A) From [9], (1.2) it follows that

$$\mathbf{c}_i = d_{i-1}\mathbf{b}_i - \sum_{k=1}^{i-1} \frac{d_{i-1}}{d_{k-1}d_k} \lambda_{i,k}\mathbf{c}_k.$$

Define for j = 0, 1, ..., i - 1,

$$\mathbf{c}_i(j) = d_j \mathbf{b}_i - \sum_{k=1}^j \frac{d_j}{d_{k-1} d_k} \lambda_{i,k} \mathbf{c}_k.$$

Then $\mathbf{c}_i(0) = \mathbf{b}_i$, and $\mathbf{c}_i(i-1) = \mathbf{c}_i$. The $\mathbf{c}_i(j)$ is exactly the vector computed in (A) at the *j*th step, since

$$(d_j \mathbf{c}_i (j-1) - \lambda_{i,j} \mathbf{c}_j)/d_{j-1}$$

= $d_j \mathbf{b}_i - \sum_{k=1}^{j-1} \frac{d_j}{d_{k-1} d_k} \lambda_{i,k} \mathbf{c}_k - \frac{d_j}{d_{j-1} d_j} \lambda_{i,j} \mathbf{c}_j = \mathbf{c}_i(j).$

This explains the recursive formula in line (A). It remains to show that the occurring vectors $\mathbf{c}_i(j)$ are integral. This follows from

$$d_j \sum_{k=1}^j \frac{1}{d_{k-1}d_k} \lambda_{i,k} \mathbf{c}_k = d_j \sum_{k=1}^j \mu_{i,k} \mathbf{b}_k^*,$$

which is integral by [9, p. 523, l. 11].

(B), (C) Note that the third and fourth line, starting from label (2), in the original algorithm are independent of the first, second, and fifth line. Thus a permutation of these lines is allowed. We rewrite the first, second,

and fifth line as follows, where we indicate variables that have been changed by a prime,

$$B'_{k-1} := B_k + \mu_{k,k-1}^2 B_{k-1}; \qquad (3.4)$$

$$B'_{k} := B_{k-1}B_{k}/B'_{k-1}; \qquad (3.5)$$

$$\mu'_{k,k-1} := \mu_{k,k-1} B_{k-1} / B'_{k-1}; \qquad (3.6)$$

$$\mu'_{i,k-1} := \mu'_{k,k-1}\mu_{i,k-1} + (1 - \mu_{k,k-1}\mu'_{k,k-1})\mu_{i,k};$$
 for $i = k+1,..., n.$ (3.7)

$$\mu'_{i,k} := \mu_{i,k-1} - \mu_{k,k-1} \mu_{i,k}$$
(3.8)

The d_i remain unchanged for i = 0, 1, ..., k - 2, and by (3.5) also for i = k. Now, (3.4) is equivalent to

$$\frac{d'_{k-1}}{d_{k-2}} = \frac{d_k}{d_{k-1}} + \frac{\lambda^2_{k,k-1}}{d^2_{k-1}} \frac{d_{k-1}}{d_{k-2}},$$
(3.9)

which explains (C). From (3.6) we find

$$\frac{\lambda'_{k,k-1}}{d'_{k-1}} = = \frac{\lambda_{k,k-1}}{d_{k-1}} \frac{d_{k-1}}{d_{k-2}} \frac{d'_{k-2}}{d'_{k-1}},$$

hence $\lambda_{k,k-1}$ remains unchanged. From (3.7) we obtain

$$\frac{\lambda'_{i,k-1}}{d'_{k-1}} = \frac{\lambda_{k,k-1}}{d'_{k-1}} \frac{\lambda_{i,k-1}}{d_{k-1}} + \left(1 - \frac{\lambda_{k,k-1}}{d_{k-1}} \frac{\lambda_{k,k-1}}{d'_{k-1}}\right) \frac{\lambda_{i,k}}{d_k},$$

whence, by multiplying by $d_{k-1}d'_{k-1}$ and using (3.9),

$$d_{k-1}\lambda'_{i,k-1} = \lambda_{k,k-1}\lambda_{i,k-1} + (d_{k-1}d'_{k-1} - \lambda^2_{k,k-1})\frac{\lambda_{i,k}}{d_k}$$
$$= \lambda_{k,k-1}\lambda_{i,k-1} + d_{k-2}\lambda_{i,k}.$$

Finally, from (3.8) we see

$$\frac{\lambda'_{i,k}}{d_k} = \frac{\lambda_{i,k-1}}{d_{k-1}} - \frac{\lambda_{k,k-1}}{d_{k-1}} \frac{\lambda_{i,k}}{d_k}$$

and (B) follows.

In our applications we often have a lattice Γ , of which a basis is given such that the associated matrix, A say, has the special form

$$A = \begin{pmatrix} 1 & & 0 \\ 0 & \cdot & \\ & 1 & \\ \theta_1 & \cdots & \theta_n \end{pmatrix},$$

where the θ_i are large integers (they may have several hundreds of digits). We can compute a reduced basis of this lattice directly, using the matrix A itself as input for the L^3 -BRA. But it may save time and space to split up the computation into several steps with increasing accuracy, as follows.

Let k be a natural number (the number of steps), and let l be a natural number such that the θ_i have about kl (decimal) digits. For i = 1, ..., n, j = 1, ..., k, put

$$\theta_i^{(j)} = [\theta_i / 10^{l(k-j)}],$$

and define $\psi_i^{(j)}$ by

$$\theta^{(j+1)}_{i} = 10^{j} \theta^{(j)}_{i} + \psi^{(j)}_{i}.$$

Thus, the $\psi_i^{(j)}$ are blocks of *l* consecutive digits of θ_i . Define for the relevant *j*,

$$A_{j} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \theta_{1}^{(j)} & \cdots & \theta_{n}^{(j)} \end{pmatrix} , \qquad \Psi_{j} = \begin{pmatrix} 0 \\ \psi_{1}^{(j)} \cdots \psi_{n}^{(j)} \end{pmatrix},$$
$$E = \begin{pmatrix} 1 & 0 \\ 0 & \cdot & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0' \end{pmatrix}.$$

Then it follows at once that

$$A_{i+1} = EA_i + \Psi_i.$$

Note that $A_k = A$, since $\theta_i^{(k)} = \theta_i$. Put $U_0 = I$, $C_1 = A_1$. For some $j \ge 1$ let C_j and U_{j-1} be known matrices. Then we apply the L^3 -BRA to $C = C_j$, $U = U_{j-1}$. We thus find matrices B_j and U_j such that

$$B_{j} = C_{j} U_{j-1}^{-1} U_{j}.$$

Now put

$$C_{i+1} = EB_i + \Psi_i U_i.$$

By induction the matrices B_j , C_j , and U_j are well defined for j = 1, ..., k. Note that

$$C_{j+1}U_{j}^{-1} = EC_{j}U_{j-1}^{-1} + \Psi_{j},$$

so the $C_j U_{j-1}^{-1}$ satisfy the same recursive relation as the A_j . Since $C_1 U_0^{-1} = A_1$, we have $C_j U_{j-1}^{-1} = A_j$ for all j. Hence

$$B_{i} = C_{i} U_{i-1}^{-1} U_{i} = A_{i} U_{i},$$

and it follows that B_k and A_k are associated to bases of the same lattice, which is Γ . Moreover, since B_k is output of the L^3 -BRA, it is associated to a reduced basis of Γ .

Let us now analyse the computation time. For a matrix M we denote by L(M) the maximal number of (decimal) digits of its entries. If the L^3 -BRA is applied to a matrix C, with as output a matrix B, then according to the experiences of Lenstra, Odlyzko (cf. Lenstra [10, p. 7]) and ourselves, the computation time is proportional to $L(C)^3$ in practice. Since B is associated to a reduced basis, we have

$$L(B) \simeq {}^{10}\log(\det(\Gamma))/n.$$

In our situation, $L(A_j) \simeq lj$, $L(\Psi_j) \simeq l$, and since $\det(B_j) = \det(A_j) = \theta_n^{(j)}$, we have $L(B_j) \simeq lj/n$. Put $B_j = (b_{i,h}^{(j)})$, $U_j = (u_{i,h}^{(j)})$. Then by $B_j = A_j U_j$ and the special shape of A_j we have $b_{i,h}^{(j)} = u_{i,h}^{(j)}$ for i = 1, ..., n - 1, h = 1, ..., n, and

$$u_{n,h}^{(j)} = (-b_{1,h}^{(j)}\theta_1^{(j)} - \cdots - b_{n-1,h}^{(j)}\theta_{n-1}^{(j)} + b_{n,h}^{(j)})/\theta_n^{(j)}.$$

It follows that $L(U_i) \simeq L(B_i)$. So

$$L(C_j) \simeq \max(L(EB_{j-1}), L(\Psi_{j-1}U_{j-1})) \simeq l + l(j-1)/n.$$

Instead of applying the L^3 -BRA once with A as input, we apply it k times, with $C_1, ..., C_k$ as input. Thus we reduce the computation time by a factor

$$\frac{L(A)^3}{\sum_{j=1}^k L(C_j)^3} \simeq \frac{(lk)^3}{\sum_{j=1}^k l^3 (1+(j-1)/n)^3} = \frac{k^3 n^3}{\sum_{j=0}^{k-1} (n+j)^3}$$

For k between 2.5n and 3n this expression is maximal, about $0.4n^2$. So the reduction in computation time is considerable. The storage space that is required is also reduced, since the largest numbers that appear in the input have l(1 + ((k-1)/n)) digits.

We use the L^3 -BRA for finding a lower bound for the length of the nonzero vectors of a lattice Γ . Let $|\cdot|$ denote the euclidean length on \mathbb{R}^n . Put

$$l(\Gamma) = \min_{\mathbf{0} \neq \mathbf{x} \in \Gamma} |\mathbf{x}|.$$

Then the following inequality holds (cf. [9, (1.11)]).

LEMMA 3.1. (Lenstra et al.). Let $\mathbf{b}_1, ..., \mathbf{b}_n$ be a reduced basis of the lattice Γ . Then

$$l(\Gamma) \ge 2^{-(n-1)/2} |\mathbf{b}_1|.$$

In some applications we want to compute all vectors in a lattice with length bounded by a given constant. To do this we employ a recent algorithm of Fincke and Pohst [7], in combination with the L^3 -BRA.

4. A DIOPHANTINE INEQUALITY

Let $p_1 < \cdots < p_t$ be prime numbers, where $t \ge 2$. Let S be the set of all positive integers composed of these primes only, so

$$S = \{ p_1^{x_1} \cdots p_t^{x_t} : x_i \in \mathbb{Z}, x_i \ge 0 \text{ for } i = 1, ..., t \}.$$

Let $0 < \delta < 1$ be a fixed real number. We study the diophantine inequality

$$0 < x - y < y^{\delta} \tag{4.1}$$

in x, $y \in S$. For a solution x, y of (4.1), the finitely many $z \in \mathbb{N}$ for which zx, zy is also a solution of (4.1) can be found without any difficulty. Therefore we may assume that (x, y) = 1. Put

$$X = \max_{1 \le i \le t} \operatorname{ord}_{p_i}(xy).$$

Tijdeman showed that there exists a computable number c, depending on p_i only, such that for all $x, y \in S$ with $x > y \ge 3$,

$$x - y > y / (\log y)^c$$

(cf. Shorey and Tijdeman [18, Theorem 1.1]). Thus, for any solution of (4.1) a bound for X can be computed, and we do so in Section 4.A. In Sections 4.B and 4.C we show how to reduce such an upper bound, in the cases t = 2 and $t \ge 3$ respectively.

4.A. Upper Bounds

THEOREM 4.1. In the above notation, put

$$C_4 = 2^{9t+26} t^{t+4} \max\left(1, \frac{1}{\log p_1}\right) \log p_2 \cdots \log p_t \log(e \log p_{t-1})/(1-\delta),$$

$$C_5 = 2 \log 2/\log p_1 + 2C_4 \log(eC_4 \log p_t).$$

Then the solutions of (4.1) satisfy $X < C_5$.

Proof. If $y \leq \frac{1}{2}x$, then $y^{\diamond} > x - y \geq y$, which contradicts $y \geq 1$. So $y > \frac{1}{2}x$. Put $A = \log(x/y)$, then

$$0 < A < x/y - 1 < y^{-(1-\delta)} < (\frac{1}{2}x)^{-(1-\delta)}.$$
(4.2)

By $x = \max(x, y) \ge p_1^X$, we obtain

$$0 < A < 2^{1-\delta} p_1^{-(1-\delta)X}.$$
(4.3)

We apply Lemma 2.1 to Λ , with n = t, q = 2. Since $p_i \ge 3$ we have $V_i = \log p_i$ for $i \ge 2$. Thus

$$\Lambda > \exp\{-(\log X + \log(e \log p_i)) C_4(1-\delta) \log p_1\}.$$

Combining this with (4.3) we find

$$X < C_4 \log(e \log p_1) + \log 2/\log p_1 + C_4 \log X.$$

The result now follows from Lemma 2.3, since $C_4 > e^2$.

EXAMPLES. With t = 2, $2 \le p_i \le 199$ and $\delta = \frac{9}{10}$ we have $C_4 < 2.30 \times 10^{17}$ and $C_5 < 1.97 \times 10^{19}$. With t = 6, $2 \le p_i \le 13$ and $\delta = \frac{1}{2}$ we find $C_4 < 8.37 \times 10^{33}$ and $C_5 < 1.35 \times 10^{36}$.

4.B. The Case t = 2

In this section we work out the example t = 2, $2 \le p_i \le 199$ and $\delta = \frac{9}{10}$. We find all solutions of (4.1) with these parameters, thus extending a result of Cijsouw, Korlaar, and Tijdeman (Appendix to Stroeker and Tijdeman [20]). We write

$$A = |x_1 \log p_1 - x_2 \log p_2|,$$

where x_1, x_2 are both positive integers. We assume that

$$p_1^X > 10^{25},$$
 (4.4)

since it is easy to find the remaining solutions. Let $\log p_1 / \log p_2$ have the simple continued fraction expansion

$$\log p_1 / \log p_2 = [0; a_1, a_2, ...],$$

and let the convergents r_n/q_n be defined by

$$r_{-1} = 1,$$
 $r_0 = 0,$ $r_n = a_n r_{n-1} + r_{n-2},$
 $q_{-1} = 0,$ $q_0 = 1,$ $q_n = a_n q_{n-1} + q_{n-2}$ $(n = 1, 2,...).$

It is well known that r/q is a convergent of a real number α if

$$|\alpha - r/q| < 1/2q^2$$

and that all convergents r_n/q_n of $\alpha = [a_0; a_1, a_2, ...]$ satisfy

$$1/(a_{n+1}+2) q_n^2 < |\alpha - r_n/q_n| < 1/a_{n+1} q_n^2.$$
(4.5)

We may assume that $(x_1, x_2) = 1$. We now have the following criteria.

LEMMA 4.2. Assume (4.4).

(a) If (4.3) holds for some x_1, x_2 , then $x_2 = r_k$, $x_1 = q_k$ for some $k \leq 92$, and

$$a_{k+1} + 2 > p_1^{q_k/10} \frac{1}{q_k} \frac{\log p_2}{2^{1/10}}.$$

(b) If for some k

$$a_{k+1} > p_1^{q_k/10} \frac{1}{q_k} \frac{\log p_2}{2^{1/10}},$$

then (4.3) holds for $x_2 = r_k$, $x_1 = q_k$.

Proof. First we show that $x_1 \ge x_2$, hence $X = x_1$. Namely, if $x_1 < x_2$, then

$$\Lambda = x_2 \log p_2 - x_1 \log p_1 > X(\log p_2 - \log p_1) \ge X \log \frac{199}{197} > 0.0101 \ X.$$

From (4.3) and (4.4) we infer

$$0.0101 \le 0.0101 \ X < \Lambda < 2^{1/10} 10^{-5/2} < 0.0034,$$

which is contradictory. Next we prove that

$$p_1^{X/10} > 3.1 X.$$
 (4.6)

Namely, suppose the contrary. Then $2^{X/10} \le 3.1 X$, and it follows that $X \le 80$. This contradicts $3.1 X \ge p_1^{X/10} > 10^{5/2}$. Now, (4.3) is equivalent to

$$\left|\frac{x_2}{X} - \frac{\log p_1}{\log p_2}\right| < \frac{2^{1/10}}{\log p_2} p_1^{-X/10} \frac{1}{X}.$$
(4.7)

delta	0.00000 0.21534 0.21534 0.48832 0.48832 0.48575 0.22754 0.46694 0.46694 0.45416 0.2941	0.40194 0.32293 0.38504 0.47828 0.47828 0.4776 0.88259 0.88558 0.88558 0.885332	0.76159 0.87942 0.887942 0.88760 0.88743 0.88743 0.88743 0.888656 0.888656 0.88656 0.88656 0.88656 0.88656 0.88656 0.88785 0.88568 0.88568 0.885785 0.895785 0.895785 0.895785 0.895785 0.895785 0.895785 0.895785 0.895785555000000000000000000000000
$p_2^{x_2}$	9 27 21 21 21 21 21 21 21 21 21 21 21 21 21	2209 2209 6889 6889 52929 32761 627 42241 1 11913 04731 02767 1 63043 64614 03549 2 25229 22321 39041 2 25229 22321 39041 2 25331 49190 66161	2 25229 22321 39041 2 35124 32775 37493 3 93658 88267 02081 9 97473 03260 05057 11 51499 04768 98413 11 51499 04768 98413 12 20050 97657 05829 21 61148 23132 84249 23 61414 63757 0582 67913 174 88713 0555 13049 358 87158 67052 67913 174 88714 037055 13049 358 35447 03555 13049 358 35447 03555 13049 358 35447 037058 67913 174 88714 03175 358 8714 037078 41401 498 31141 43181 21121 498 31141 43181 21121
<i>x</i> ₂	~~~~~	0000040r%ñ	<u>೫८೫८८८७ २८०</u> ७७०७७%0%
p_2	2352 <i>5</i> .112 <i>5</i> .612	47 47 83 89 89 83 83 19	829882333 43986199388738 88888333 43986199388738
$p_1^{x_1}$	27 27 128 128 128 128 335 512 513 2187	2187 2197 2197 6859 52791 32768 627 48517 1 12589 99068 42624 1 62841 35979 10449 2 21331 49190 66161 2 25179 98136 85248	2 25179 98136 85248 2 334418 57910 15625 3 93737 63856 99289 9 90457 80329 05937 11 39889 51853 73143 11 92092 89550 78125 11 92092 89550 78125 11 92092 89550 78125 11 92092 89550 78125 12 20050 97657 05829 21 91462 44732 20321 45 94972 98635 72161 59 60464 47753 90625 177 91762 17794 6041 353 81478 32054 6041 364 03636 19364 67383 504 03636 19364 67383 505 44702 84992 93771
x1	もしろしてのしので	2128807593337	2222999222122222
p_1	<i>ЧШИХИЧИНИШ</i>	wäð£28770797	13333341 339005-17205

338

TABLE II (Theorem 4.3a)

B. M. M. DE WEGER

DIOPHANTINE EQUATIONS

0.85578 0.88985 0.89708	0.89710 0.86722 0.86722 0.83013 0.87580 0.87580 0.87580 0.87584 0.87721 0.89770 0.83799	0.89916 0.89800 0.89800 0.87990 0.88739 0.89400 0.89420 0.89420 0.88840 0.89528 0.89520 0.89528 0.89528 0.89528	0.89828 0.87071 0.84941 0.88934 0.88933 0.88933 0.88933 0.88933 0.88933 0.88933 0.89319 0.89402 0.89402	0.84151 0.86903 0.89326 0.89709 0.89791 0.89060 0.89106
504 03636 19364 67383 511 11675 33006 41401 550 32903 17162 48441			38596 84695 57044 9 72435 68515 13248 2 90403 56526 21403 (52404 46318 60195 3 52404 46318 60195 3 5877 95485 51051 3 33877 95485 51051 3 35533 36131 80951 1 74201 97479 41888 4 41794 57931 33178 (45667 68001 98967 9	1 93813 41794 57931 33178 02199 2 25501 16774 11783 51178 82911 123 65351 311783 51179 80561 587 32059 5385 49335 38653 36551 587 32059 5385 49335 38653 36551 63325 11891 36793 38654 32759 54593 5 07282 02989 53863 75247 83563 9681 15 49673 14251 78936 43509 93277 30561
13 10 11	58 8 8 8 6 1 6 8 8 0 1 0 8 8 0 1 0 8 0 1 0 1 0 1 0 1 0	0499 <i>2</i> 50133999410	5111221112 5111221112 5211122	11222221
23 59 41	97 × 62 × 63 × 64 × 64 × 64 × 64 × 64 × 64 × 64	101 291 199 199 181 181 181 181 181 181 181 1	181 17 163 163 191 199 199 199	199 31 71 83 83 83 83 83
505 44702 84992 93771 505 44702 84992 93771 558 54586 40832 84007	00668 57828 92150 46068 83780 45517 15921 50840 15921 50840 41591 93813 37203 65547 37203 65547 48814 74191 97629 48382		55588 75295 03927 03927 77663 97268 97268 97268 67952 67952 67952	1 93832 45667 68001 98967 96723 2 25393 40290 69225 80878 63249 123 79400 39285 38027 48991 24224 587 44031 06360 42001 88795 3643 63382 53001 14114 70074 83516 02688 5 07060 24009 12917 60598 68128 21504 15 50293 28026 62396 21526 95351 05521
17 21 21	41001178488	53316113025885 533161130258855	49 12 29 21 24 49 48 16 29 29 29 29 29 29 29 29 29 29 29 29 29	53 99 11 90 28 29 12 93 28 29 12 93 28 29 12 93 28 29 12 93 29 20 30 29 20 30 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20
11 11	66766490600	22255566002	4°52 311/3 50 20 20 20 20 20 20 20 20 20 20 20 20 20	wг 98296

340)	B. M. M. DE WEGER	
	delta	$\begin{array}{c} .00000\\ 0.21534\\ 0.48832\\ 0.48832\\ 0.48832\\ 0.488355\\ 0.28996\\ 0.22754\\ 0.48694\\ 0.48607\\ 0.48607\\ 0.48070\\ 0.48070\\ 0.48070\\ 0.48070\\ 0.48070\\ 0.48070\\ 0.48070\\ 0.30762\\ 0.307$	0.85259 0.89628 0.83597 0.83586 0.885328 0.885326 0.89154 0.89154 0.89154 0.897396 0.897396 0.88735 0.88735 0.88735 0.88735 0.88735 0.88735
	$P_2^{x_2}$	0	$ \begin{array}{c} 11913 \ 04731 \ 02767 \\ 15563 \ 13814 \ 26176 \\ 155157 \ 89852 \ 64449 \\ 195312 \ 50000 \ 00000 \\ 2 \ 21331 \ 49190 \ 66161 \\ 3 \ 67034 \ 44869 \ 87776 \\ 4 \ 09000 \ 00000 \ 00000 \\ 8 \ 14040 \ 60851 \ 91601 \\ 9 \ 90457 \ 80329 \ 05937 \\ 12 \ 20050 \ 97657 \ 05829 \\ 17 \ 71470 \ 00000 \ 00000 \ 00000 \\ 21 \ 61148 \ 23132 \ 84249 \\ 21 \ 91462 \ 44320 \ 20321 \\ 21 \ 61148 \ 23132 \ 84249 \\ 21 \ 91462 \ 44320 \ 20321 \\ 21 \ 61148 \ 23132 \ 84249 \\ 22 \ 52034 \ 74360 \ 5576 \\ 35 \ 52034 \ 74360 \ 5576 \\ \end{array} $
TABLE III (Theorem 4.3b)	X_2	<u></u>	°55865555655
III (The	p_2	e e e e e e e e e e e e e e e e e e e	412888 822882888888888888888888888888888
TABLE	$P_1^{\chi_1}$	0	1 12589 99068 42624 1 12589 99068 42624 1 52168 11431 69024 1 94619 50683 5375 2 25179 98136 85248 3 65615 84400 62976 4 17724 81694 15651 8 29350 94674 71872 10 00000 00000 00000 00000 11 92092 89550 78125 18 01439 85094 81984 21 91462 44320 20321 21 91462 44320 20321 21 93695 06403 77856 36 02879 70189 63968
	x_1	พพงงพะกพ®พ ออี4พรีกกพ4ก	822228 222228
	r d	ผพยศพยศตยะ ศลดมีศลตมีพืด	0063200 208500 208500 208500 2000 2000 2000

340

B. M. M. DE WEGER

DIOPHANTINE EQUATIONS

0.87619 0.88076 0.88656 0.88631 0.88631 0.88575	0.87497 0.85578 0.85579 0.85579 0.85579 0.85579 0.89710 0.89710 0.89710 0.89872 0.89872 0.89872 0.89872 0.89872	0.89721 0.87101 0.87101 0.89800 0.89638 0.89638 0.88730 0.86843 0.86863 0.86863	0.88695 0.89368 0.89126 0.89126 0.89390 0.89390 0.89390 0.89390 0.89390 0.89390 0.8960 0.89751 0.89829 0.89829 0.89829 0.89829 0.89829 0.89829
42 42074 74827 76576 50 54210 65137 26817 50 54210 65137 26817 96 54915 73730 46875 97 65625 00000 00000	154 47237 77391 19461 504 03636 19364 67383 550 32903 17162 48441 787 66278 37885 49761 789 60568 57828 84121 787 66278 37885 49761 787 66278 37885 49761 787 65278 37885 49761 2472 15921 50840 12303 6582 95200 58400 35281 6582 95200 58400 35281	37252 90298 46191 40625 2 44140 62500 00000 00000 2 97558 23267 57994 63481 6 71088 64000 00000 00000 9 25103 10231 50136 29321 41 29065 87698 35408 01536 54 60907 70612 05331 77327 61 32610 41568 09986 49961 93 87480 33764 77543 05649 130 90925 53986 67734 38464	188 32349 19413 17426 09041 379 29227 19491 55588 02161 379 29227 19491 55588 02161 2390 72435 68515 13248 47153 3334 46267 95181 53070 88493 19779 85201 46267 95181 53703 34081 3334 46267 95181 53070 8493 1973 1971 193832 45667 68001 98967 96723 2 25501 16774 16274 31786 82911 10 84280 35605 95593 23542 77668 171 79869 18400 00000 00000 00000 171 79869 18400 00000 00000 00000 25259 93335 73498 06081 18208 06649
91119	8815451565	8242233334558 4523333334558 4523333334558 4523333334 452333334 4523333334 45233333 45233333 4523333 4523333 4523333 452333 45	141 172 172 172 172 172 172 172 172 172 17
9888888 8888888	323347191222 328347191232	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	86246 18833333345 86236 18833333345 86236 188333
42 05298 34622 57059 50 03154 50989 99707 51 18589 30140 90757 95 42895 66616 82176 96 54915 73730 46875	155 56809 55578 12224 505 44702 84992 93771 558 54586 40832 84007 789 73022 30536 02816 789 73022 30536 02816 799 00668 57828 84121 2481 15287 32037 35576 6508 40835 57128 90625 6568 40835 57128 90625	36893 48814 74191 03232 2 43569 22421 60813 05397 2 95147 90517 93528 25856 6 72749 99493 25600 09201 9 31322 57461 54785 15625 41 39545 12236 93847 65625 54 80386 85778 48021 85939 61 40942 21446 48154 97216 94 44732 96573 92904 27392 131 07200 00000 00000 00000	188 89465 93147 85808 54784 377 78931 86295 71617 09568 2392 93208 55061 75555 90083 2392 93208 50817 30565 50083 3325 25673 00796 50878 90625 19784 19555 60031 35891 23979 32199 05755 81317 97268 37607 1 93428 13113 83446 67952 98816 2 25394 40290 69225 80878 63249 10 83470 59433 8372 20418 63249 10 83470 59433 8372 20418 63241 22 9386 91343 8372 20418 63241 22 9383 93346 67925 80878 63241 22 9384 9313 8372 20418 63251 29 9386
33 11 12 12 12 12	16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	68 17 17 17 17 17 17 17 17 17 17 17 17 17	4 2482888888888888888888888888888888888
35 263 35 263 35 263	111 158 158 19 19 11 11	20 × 61 33 × 11 2 37 2	126623 411-72-195322

It follows from (4.6) that

$$\left|\frac{x_2}{X} - \frac{\log p_1}{\log p_2}\right| < \frac{2^{1/10}}{\log 2} \frac{1}{3.1 X^2} < \frac{1}{2 X^2},$$

hence x_2/X is a convergent of $\log p_1/\log p_2$, say $x_2 = r_k$, $X = q_k$. Since q_k is at least the (k + 1)th Fibonacci number, and by $X < 1.97 \times 10^{19}$ (from the examples at the end of Sect. 4.A), we obtain $k \leq 92$. The lemma now follows from (4.5) and (4.7).

To solve (4.1), we computed the continued fraction expansions and the convergents of $\log p_1/\log p_2$ exactly, up to the index *n* such that $q_{n-1} \leq 1.97 \times 10^{19} < q_n$. Lemma 4.2 guarantees that $n \leq 93$. Doing so, we obtained the result,

THEOREM 4.3. (a) The diophantine inequality

$$|p_1^{x_1} - p_2^{x_2}| < \min(p_1^{x_1}, p_2^{x_2})^{\delta}$$
(4.8)

with p_1 , p_2 primes such that $p_1 < p_2 < 200$, and

$$x_{1}, x_{2} \in \mathbb{Z}, x_{1} \ge 2, x_{2} \ge 2, \text{ and either } \delta = \frac{1}{2}$$

or $\delta = \frac{9}{10}$ and $\min(p_{1}^{x_{1}}, p_{2}^{x_{2}}) > 10^{15}$ (4.9)

has only the 77 solutions listed in Table II.

(b) The diophantine inequality (4.8) with p_1 , p_2 non-powers such that $2 \le p_1 < p_2 \le 50$ and conditions (4.9), has only the 74 solutions listed in Table III.

In Tables II and III, the column "delta" gives the real number with $|p_1^{x_1} - p_2^{x_2}| = \min(p_1^{x_1}, p_2^{x_2})^{\text{delta}}$. Note that in Theorem 4.3 we do not demand $(x_1, x_2) = 1$. The numerous solutions of (4.8) with $\delta = \frac{9}{10}$ and $\min(p_1^{x_1}, p_2^{x_2}) \leq 10^{15}$ can be found without much effort. The computations for the proof of the theorem took 35 sec. We computed approximations of $\log p_i$ by writing it as a suitable linear combination of numbers of the form $\log(1 + x)$ for small x, and evaluating $\log(1 + x)$ by a Taylor series, taking care to avoid mistakes by rounding-off procedures. Thus we computed explicit rational numbers θ_1 , θ_2 with

$$\theta_1 < \log p_1 / \log p_2 < \theta_2 < \theta_1 + \varepsilon$$

for a small enough ε . Then as far as the partial quotients of the continued fraction expansions of θ_1 and θ_2 coincide, they coincide with the partial quotients a_i of $\log p_1/\log p_2$. It appeared to be sufficient to take $\varepsilon = 10^{-50}$.

Note that Lemma 4.2. does not yield a decision if

$$a_{k+1} \leq p_1^{q_k/10} \frac{1}{q_k} \frac{\log p_2}{2^{1/10}} < a_{k+1} + 2.$$

Since this gap is relatively small, this situation is unlikely to occur. We met only one such a coincidence, namely for $p_1 = 15$, $p_2 = 23$. Here, $\log 15/\log 23 = [0; 1, 6, 2, 1, 51,...]$, so that $a_5 = 51$, $r_4 = 19$, $q_4 = 22$, and $15^{22/10} \frac{1}{22} \log 19/2^{1/10} = 51.4... \in [51, 53)$. We have further $\Lambda = 0.002714... < 0.002771... = 2^{1/10}15^{-22/10}$, so (4.3) holds. But (4.1) does not hold, since $\log(15^{22} - 23^{19})/\log(23^{19}) = 0.9008...$. This example illustrates that (4.3) is weaker than (4.1). Therefore all found solutions of (4.3) have been checked for (4.1) as well.

4.C. The Case $t \ge 3$

In this section we show how the L^3 -BRA can be used to reduce an upper bound for the solutions of (4.1) in the multi-dimensional case. This will enable us to find all solutions of (4.1) for given $t \ge 3$, $p_1, ..., p_t$ and δ .

Let x, y be a solution of (4.1). Put $x_i = \operatorname{ord}_{p_i}(x/y)$ (i = 1,..., t), and $X = \max_{1 \le i \le t} |x_i|$. Let C be an upper bound for X, for example, $C = C_5$ (cf. Theorem 4.1). Choose a positive constants $y \in \mathbb{Z}$, $C_0 \in \mathbb{R}$, and put

$$\theta_i = [\gamma C_0 \log p_i] \qquad (i = 1, ..., t). \tag{4.10}$$

Consider the lattice $\Gamma \subset \mathbb{Z}'$, generated by the column vectors of the matrix

$$A = \begin{pmatrix} \gamma & 0 \\ 0 & \ddots & \\ & \gamma & \\ \theta_1 & \cdots & \theta_t \end{pmatrix}.$$

Put $\lambda = x_1 \theta_1 + \cdots + x_t \theta_t$. Then

$$\mathbf{y} = A \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_t \end{pmatrix} = \begin{pmatrix} \gamma x_1 \\ \vdots \\ \gamma x_{t-1} \\ \lambda \end{pmatrix} \in \Gamma.$$

With this notation we have the following useful lemma.

LEMMA 4.4. Suppose that for a solution of (4.1)

$$|\lambda| > \sum_{i=1}^{t} |x_i| \tag{4.11}$$

holds. Then, for i = 1, ..., t,

$$|x_i| < \log(2^{1-\delta}\gamma C_0 \left| \left(|\hat{\lambda}| - \sum_{i=1}^t |x_i| \right) \right) \right| (1-\delta) \log p_i.$$
(4.12)

COROLLARY 4.5. Let X_0 be a positive number such that

$$l(\Gamma) \ge (4t^2 + (t-1)\gamma^2)^{1/2} X_0.$$
(4.13)

Then (4.1) has no solutions with for i = 1, ..., t,

$$\log(2^{1-\delta}\gamma C_0/tX_0)/(1-\delta)\log p_i \le |x_i| \le X_0.$$
(4.14)

Proof of Lemma 4.4. Put $\Lambda = \log(x/y) = \sum_{i=1}^{t} x_i \log p_i$. Then

$$|\lambda - \gamma C_0 \Lambda| = \left| \sum_{i=1}^{t} x_i ([\gamma C_0 \log p_i] - \gamma C_0 \log p_i) \right| \leq \sum_{i=1}^{t} |x_i|,$$

whence, by (4.11),

$$|\Lambda| \ge \left(|\lambda| - \sum_{i=1}^{t} |x_i| \right) / \gamma C_0 > 0$$

By (4.2) we infer

$$x < 2 |\Lambda|^{-1/(1-\delta)} \leq \left(2^{1-\delta} \gamma C_0 / \left(|\lambda| - \sum_{i=1}^{t} |x_i| \right) \right)^{1/(1-\delta)}$$

Now (4.12) follows, since $p_i^{|x_i|} \leq \max(x, y) = x$.

Proof of Corollary 4.5. By $x \neq y$ we have $y \neq 0$. Suppose that $|x_i| \leq X_0$ for all *i*. Then

$$l(\Gamma)^{2} \leq |\mathbf{y}|^{2} = \gamma^{2} \sum_{i=1}^{T-1} x_{i}^{2} + \lambda^{2} \leq (t-1) \gamma^{2} X_{0}^{2} + \lambda^{2}.$$

By (4.3) it follows that

$$\lambda^2 \ge l(\Gamma)^2 - (t-1) \gamma^2 X_0^2 \ge 4t^2 X_0^2,$$

and we infer

$$|\lambda| - \sum_{i=1}^{t} |x_i| \ge 2tX_0 - tX_0 = tX_0.$$

Now apply Lemma 4.4, and the result follows at once.

We use the corollary to reduce the upper bound C for X as follows. Choose C_0 somewhat larger than $(tC)^t$. The parameter γ is used to keep the "rounding-off error" $|\gamma C_0 \log p_i - \theta_i|$ relatively small. (If C_0 is large, then this error is already so small compared to C_0 that it is safe to take $\gamma = 1$.) The θ_i are integers, and are computed exactly. By the L^3 -BRA we can compute a lower bound for $l(\Gamma)$ (cf. Lemma 3.1). We may expect that this bound is of size $(\det(\Gamma))^{1/t}$, which is about γtC . Thus we may expect that (4.13) holds with $X_0 = C$. Otherwise we may try some larger C_0 . If (4.13) holds, then (4.14) gives bounds for $|x_i|$, and thus for X, of size $\log(C_0/C)$, which is of size $\log C$. Hence the reduction of the upper bound is considerable indeed. Lemma 4.4 is more precise than its corollary, and therefore more suitable for reducing a small bound C.

We now proceed with an elaborate example. Let t = 6, $p_1, ..., p_6 = 2, ..., 13$, and $\delta = \frac{1}{2}$. By the example at the end of Section 4.A, we know that X < Cfor $C = 1.35 \times 10^{36}$. We take $C_0 = 10^{240}$, $\gamma = 1$. The values of the θ_i were computed exactly. We applied the L^3 -BRA to the corresponding lattice Γ_1 , and found a reduced basis $\mathbf{c}_1, ..., \mathbf{c}_6$ with $|\mathbf{c}_1| > 9.40 \times 10^{39}$. So Lemma 3.1 yields

$$l(\Gamma_1) > 2^{-5/2} \times 9.40 \times 10^{39} > 1.66 \times 10^{39}$$
.

This is larger than $\sqrt{149} C = 1.64... \times 10^{37}$, so (4.13) holds with $X_0 = C$. Hence, by Corollary 4.5,

$$X < \log(2^{1/2} \times 10^{240}/6 \times 1.35 \times 10^{36})/\frac{1}{2} \log 2 < 1350.4,$$

so $X \le 1350$. Next we choose $C_0 = 10^{32}$, $\gamma = 1$, and C = 1350. The reduced basis of the corresponding lattice Γ_2 was computed, and we found $|\mathbf{c}_1| > 2.71 \times 10^5$. Hence $l(\Gamma_2) > 4.79 \times 10^4$, which is larger than $\sqrt{149} C = 1.64 \dots \times 10^4$. So (4.13) holds for $X_0 = C$, and Corollary 4.5 yields

$$\begin{aligned} |x_1| &\leq 187, \qquad |x_2| \leq 118, \qquad |x_3| \leq 80, \\ |x_4| &\leq 66, \qquad |x_5| \leq 54, \qquad |x_6| \leq 50. \end{aligned}$$
(4.15)

Next we choose $C_0 = 10^{12}$, $\gamma = 10^4$. We use Lemma 4.4 as follows. If $|\lambda| > 10^6$ then (4.11) holds by (4.15), and (4.12) yields

$$|x_1| \le 67, \quad |x_2| \le 42, \quad |x_3| \le 29,$$

 $|x_4| \le 24, \quad |x_5| \le 19, \quad |x_6| \le 18.$ (4.16)

All vectors in Γ_3 satisfying (4.15) and $|\lambda| \le 10^6$ can be computed with the algorithm of Fincke and Pohst [7] (we omit the details of the com-

putations). We found that there exist only two such vectors, but they do not correspond to solutions of (4.1). Hence all solutions of (4.1) satisfy (4.16). Next we choose $C_0 = 10^8$, $\gamma = 10^4$. If $|\lambda| > 5 \times 10^5$, then (4.12) yields

$$|x_1| \le 42, \qquad |x_2| \le 27, \qquad |x_3| \le 18, |x_4| \le 15, \qquad |x_5| \le 12, \qquad |x_6| \le 11.$$
(4.17)

х y x - y x_1 x_2 X_3 x_4 x_5 x_6 17 71470 91 -110 6 0 17 71561 -1-- 1 5 0 4 1 --6 0 17 71875 17 71561 314 -220 97152 20 96325 827 -2--- 1 -3 0 21 461 13 -1 -3-1 -2 31 88646 31 88185 1 19 0 0 -8 1 0 57 67168 57 64801 2367 2 88 57805 499 -1 1 -6 3 88 58304 6 -4 143 48907 143 48180 727 $^{-2}$ 15 - 1 -20 1429 -150 2 1 1 143 50336 143 48907 11 3 288 29034 288 24005 5029 8 - 1 -80 1 3 1 1 293 62905 293 60128 2777 -225 -1 4337 1 337 92000 337 87663 13 1 3 - 1 -- 6 3209 2 9 -4 --- 4 0 351 56250 351 53041 1 3 0 2 -7 627 52536 627 48517 4019 3 4 1487 3 671 10351 671 08864 -261 0 5 0 -13 10 2 0 0 781 25000 781 21827 3173 3 878 95808 878 90625 5183 8 -2-104 1 1 6421 0 -- 5 1006 63296 1006 56875 25 1 -4 0 1882 38400 7151 -2-6 0 7 1882 45551 -6 1 -2 1929 14176 1929 13083 1093 0 3 3 8 -132 1992 97406 1992 90375 7031 -3 7 0 1 -137 4392 39619 4392 30000 9619 -4 -4 1 --4 -- 1 8401 -4 2 -11 2 6 0 7812 58401 7812 50000 37727 5 -- 1 -6 14336 00000 14335 62273 16 -3 1 3 14758 24779 14757 89056 35723 0 -82 -- 8 8 -- 5 0 -3 19773 26743 19773 00000 26743 -5 -211 40600 86272 2683 -25 7 1 0 -2 5 40600 88955 -9 -2 0 48828 12500 48827 86447 26053 0 13 2 1 27848 44800 31337 -2-4 1 - 1 27848 76137 -1419 1 1 38412 03200 84001 -24 -- 1 -212 -1 0 1 38412 87201 2 61033 83072 1 32553 5 1 -- 8 2 61035 15625 -5 10 0 67363 98612 2 67363 28125 70487 -9 3 7 - 2 2 2 -4 1 98425 2 9 68890 10407 18 7 0 -130 9 68892 08832 1305 16881 72831 33 63169 3 -9 -3 8 1305 16915 36000 7 -5 2834 49760 00000 41 04623 5 -- 6 4 2834 49801 04623 -1010 -6

TABLE IV (Theorem 4.6)

There are 143 vectors in Γ_4 satisfying (4.16) and $|\lambda| \leq 5 \times 10^5$. Of them, 2 correspond to solutions of (4.1), namely the vectors with

$$(x_1,...,x_6) = (7, -5, 3, -9, -3, 8),$$
 $\lambda = 257674,$
 $(x_1,...,x_6) = (-10, 10, -6, 5, -6, 4),$ $\lambda = 144817.$

Both also satisfy (4.17). Hence all solutions of (4.1) satisfy (4.17).

At this point it seems inefficient to choose appropriate parameters C_0 , γ to repeat the procedure with. But the bounds of (4.17) are small enough to admit enumeration. Doing so, we found 605 solutions of (4.1). We cannot list them all here. Instead we give the following result, from which the reader should be able to find all solutions without much effort.

THEOREM 4.6. The diophantine inequality

 $0 < x - y < y^{1/2}$

in x, $y \in S = \{2^{x_1} \cdots 13^{x_6}: x_i \in \mathbb{Z}, x_i \ge 0 \ (i = 1, ..., 6)\}$ with (x, y) = 1 has exactly 605 solutions. Among those, 571 satisfy

 $\begin{array}{ll} \operatorname{ord}_2(xy) \leqslant 19, & \operatorname{ord}_3(xy) \leqslant 12, & \operatorname{ord}_5(xy) \leqslant 8, \\ \operatorname{ord}_7(xy) \leqslant 7, & \operatorname{ord}_{11}(xy) \leqslant 5, & \operatorname{ord}_{13}(xy) \leqslant 5. \end{array}$

The remaining 34 solutions are listed in Table IV.

The computation of the reduced basis of Γ_1 took 113 sec, where we applied the L^3 -BRA as we described it in Section 3, in 12 steps. The direct search for the solutions of (4.17) took 228 sec. The remaining computations (computation of the log p_i up to 250 decimal digits, of the reduced basis of Γ_2 , and of the short vectors in Γ_3 and Γ_4) took 8 sec. Hence in total we used 349 sec. The numerical details can be obtained from the author.

5. A DIOPHANTINE EQUATION

Let $p_1 < \cdots < p_t$ be prime numbers, where $t \ge 3$, and let S be the set of all positive rational integers composed of those primes only. In this section we study the exponential diophantine equation

$$x + y = z \tag{5.1}$$

in x, y, $z \in S$. Without loss of generality we may assume that x, y, z are relatively prime. For any $a \in S$ we define

$$m(a) = \max_{1 \leqslant i \leqslant t} \operatorname{ord}_{p_i}(a).$$

It was proved by Mahler that m(xyz) is bounded for the solutions of (5.1). An explicit bound can be computed (cf. Shorey and Tijdeman [18, Corollary 1.2]). We do so in Section 5.A. In Section 5.B we introduce multi-dimensional *p*-adic approximation lattices, and in Sections 5.C and 5.D we show how to reduce the found upper bound, and to solve (5.1) completely, in the cases t=3 and $t \ge 4$, respectively. We conclude with some remarks on a conjecture of Oesterlé and Masser, which is related to Eq. (5.1), in Section 5.E.

5.A. Upper Bounds

THEOREM 5.1. In the above notation, put

$$s = [2t/3], \qquad P = p_1 \cdots p_t,$$

$$V_i = \max(e, \log p_i) \qquad (i = 1, ..., t), \ \Omega = V_{t-s+1} \cdots V_t,$$

$$G_2 = 2, \qquad G_3 = 6, \qquad G_{p_i} = p_i - 1 \quad \text{if } p_i \ge 5, \qquad G = \max_{1 \le i \le t} G_{p_i} / \log p_i,$$

$$C_6 = 2^{9s + 26} s^{s+4} \Omega \log(eV_{t-1}).$$

Choose μ , κ with $2/(s+1) \le \mu \le 2$, $0 < \kappa < \mu/2$, and put

$$\varepsilon = (\mu - \kappa)/(1 + \kappa)(1 + \mu)(s + 1),$$

$$k = \max\{(16s)^{(1 + 1/\kappa)(s + 1)}, (8/\varepsilon)^{(1 + \mu)(s + 1)}, 16^{1/\varepsilon}\},$$

$$C_7 = 4(s + 1)^{(s + 1)} k^{(1 + \mu)} G\Omega, \qquad C_8 = 4(C_6 + C_7 \log(P/p_1))/\log p_1,$$

$$C_9 = C_8(\log C_8)^2, \qquad C_{10} = \max(C_9, C_7(\log C_9)^2).$$

Then all solutions of (5.1) satisfy $m(xyz) < C_{10}$.

Proof. If we consider instead of (5.1) the equivalent equation

$$x \pm y = z, \tag{5.2}$$

then we may assume that xy has at most s prime divisors. Suppose that $m(xy) \leq 7$. Then

$$p_1^{m(z)} \leq z \leq 2 \max(x, y) \leq 2(P/p_1)^{\prime}$$

hence

$$m(z) \leq \log(2(P/p_1)^7)/\log p_1,$$

and it follows that $m(xyz) < C_{10}$. Now let $m(xy) \ge 8$, and suppose $m(z) \ge 2$. Then for some $p = p_i$,

$$m(z) = \operatorname{ord}_{p}(z) = \operatorname{ord}_{p}(\pm x/y - 1) = \operatorname{ord}_{p}(\log_{p}(x/y)).$$

Put $x/y = p_{i_1}^{x_{i_1}} \cdots p_{i_s}^{x_{i_s}}$. Then $m(xy) = \max(|x_{i_1}|, \dots, |x_{i_s}|)$. On applying Lemma 2.2 we obtain

$$m(z) \le C_7 (\log m(xy))^2.$$
 (5.3)

Obviously (5.3) is also true if m(z) < 2. If in (5.2) the plus sign holds, then

$$(P/p_1)^{m(z)} \ge z > \max(x, y) \ge p_1^{m(xy)}$$

By (5.3) it then follows that

$$m(xy) < C_7 \frac{\log(P/p_1)}{\log p_1} (\log m(xy))^2.$$
 (5.4)

If in (5.2) the minus sign holds, then we apply Lemma 2.1 as follows. Suppose that

$$m(xy) \log p_1 \ge (C_6 + C_7 \log(P/p_1))(\log m(xy))^2.$$
 (5.5)

Then it follows that

$$C_7(\log m(xy))^2 \log(P/p_1) \le m(xy) \log p_1 - \log 2.$$

Note that by (5.3)

$$\left|\frac{y}{x} - 1\right| = \frac{z}{x} = \frac{z}{\max(x, y)} \le \frac{(P/p_1)^{m(z)}}{p_1^{m(xy)}} \le \frac{(P/p_1)^{C_7(\log m(xy))^2}}{p_1^{m(xy)}},$$

so that $|y/x-1| \leq \frac{1}{2}$. Hence

$$|\log(y/x)| \le 2 \log 2 \left| \frac{y}{x} - 1 \right| \le 2 \log 2 \frac{(P/p_1)^{C_7(\log m(xy))^2}}{p_1^{m(xy)}}.$$

On the other hand, Lemma 2.1 yields

$$|\log(y/x)| > \exp\{-C_6(\log m(xy) + \log(eV_t))\}.$$

Thus we obtain

$$m(xy) \log p_1 < C_7 (\log m(xy))^2 \log(P/p_1) + \log(2 \log 2) + C_6 (\log m(xy) + \log(eV_1)).$$

Obviously,

$$C_6(\log m(xy))^2 > \log(2\log 2) + C_6(\log m(xy) + \log(eV_t)),$$

and we have a contradiction with (5.5). So from (5.4) or from the negation of (5.5) we infer

$$m(xy) < \frac{1}{4}C_8(\log m(xy))^2$$
,

and from Lemma 2.3 we obtain $m(xy) < C_9$. Now the result follows from (5.3).

EXAMPLES. With t = 3, $p_1 = 2$, $p_2 = 3$, $p_3 = 5$ we find a minimal value for $k^{1+\mu}$ on taking $\mu = 1$, $\kappa = \frac{5}{13}$, namely $k^{1+\mu} = 2^{108}$. Then $C_{10} < 6.75 \times 10^{41}$. With t = 6, $p_1, ..., p_6 = 2, ..., 13$ we take $\mu = 1$, $\kappa = \frac{3}{7}$, and we find $C_{10} < 3.37 \times 10^{73}$.

5.B. Approximation Lattices

In [23] the concept of (2-dimensional) approximation lattices of a p-adic number was introduced. In this subsection we generalize this notion to multi-dimensional approximation lattices of a linear form of p-adic numbers. We confine ourselves to the particular lattices that we use for solving Eq. (5.2), and indicate how a basis of such a lattice can be computed explicitly.

Let p be any of the primes $p_1,..., p_t$. We may assume that $p \nmid xy$. Rename the other primes as $p_0,..., p_{t-2}$, such that $\operatorname{ord}_p(\log_p(p_0))$ is minimal. For i = 1,..., t-2 and $m \in \mathbb{N}$, put

$$\theta_i = -\log_p(p_i)/\log_p(p_0) = \sum_{l=1}^{\infty} u_{i,l} p^l, \qquad \theta_i^{(m)} = \sum_{l=1}^{m-1} u_{i,l} p^l,$$

where $u_{i,l} \in \{0, 1, ..., p-1\}$. Then θ_i is a *p*-adic integer by the choice of p_0 , and $\theta_i^{(m)}$ is the unique rational integer satisfying $\operatorname{ord}_p(\theta_i - \theta_i^{(m)}) \ge m$ and $0 \le \theta_i^{(m)} < p^m$. The $\theta_i^{(m)}$ can be computed for the desired *m* by using the Taylor series for the *p*-adic logarithm,

$$\log_p(\chi) = \frac{1}{k} \log_p(1 + (\chi^k - 1)) = \frac{1}{k} \sum_{l=1}^{\infty} (-1)^{l+1} (\chi^k - 1)^l / l$$

where k is the smallest positive integer such that $\operatorname{ord}_p(\chi^k - 1) \ge 1$.

Consider the lattice $\Gamma_m \subset \mathbb{Z}^{t-1}$ generated by the column vectors $\mathbf{b}_1, ..., \mathbf{b}_{t-2}, \mathbf{b}_0$ of the matrix

$$\begin{pmatrix} 1 & & 0 \\ 0 & \ddots & \\ 0 & & 1 \\ \theta_1^{(m)} & \cdots & \theta_{t-2}^{(m)} & p^m \end{pmatrix}.$$

Put $m_0 = \operatorname{ord}_p(\log_p(p_0))$. Then

$$\Gamma_{m} = \{ (x_{1}, ..., x_{t-2}, x_{0}) \in \mathbb{Z}^{t-1} \colon |x_{1}\theta_{1} + \cdots + x_{t-2}\theta_{t-2} - x_{0}|_{p} \leq p^{-m} \}$$
$$= \{ (x_{1}, ..., x_{t-2}, x_{0}) \in \mathbb{Z}^{t-1} \colon |\log_{p}(p_{0}^{x_{0}} \cdots p_{t-2}^{x_{t-2}})|_{p} \leq p^{-(m+m_{0})} \}.$$

We call such a lattice an approximation lattice of the *p*-adic linear form $x_1\theta_1 + \cdots + x_{t-2}\theta_{t-2}$. For t=3 we have exactly the approximation lattice of θ_1 in the sense of [23]. (Note that there is a different matrix notation there). Further, consider also the set

$$\Gamma_m^* = \{ (x_1, ..., x_{t-2}, x_0) \in \mathbb{Z}^{t-1} \colon |p_0^{x_0} \cdots p_{t-2}^{x_{t-2}} \pm 1|_p \leq p^{-(m+m_0)} \}.$$

It is clear that Γ_m^* is a sublattice of Γ_m . In general, the two are not equal, since $(x_1, ..., x_{t-2}, x_0) \in \Gamma_m$ only implies $p_0^{x_0} \cdots p_{t-2}^{x_{t-2}} \equiv \zeta \pmod{p^{m+m_0}}$ for some (p-1)th root of unity ζ , not necessarily ± 1 . (Recall that $\log_p(\zeta) = 0$ if and only if ζ is a root of unity). For p = 2, 3 the only roots of unity in \mathbb{Q}_p are ± 1 , so then $\Gamma_m^* = \Gamma_m$.

For $p \ge 3$ we show how a basis $\mathbf{b}_1^*, ..., \mathbf{b}_{t-2}^*$, \mathbf{b}_0^* of Γ_m^* can be computed from a known basis $\mathbf{b}_1, ..., \mathbf{b}_{t-2}, \mathbf{b}_0$ of Γ_m . Let ζ be a primitive (p-1)th root of unity in \mathbb{Q}_p . For any $\mathbf{x} = (x_1, ..., x_{t-2}, x_0) \in \Gamma_m$ we define $k(\mathbf{x}) \in \mathbb{Z}$ by

$$p_0^{x_0} \cdots p_{t-2}^{x_{t-2}} \equiv \zeta^{k(\mathbf{x})} \pmod{p^{m+m_0}}, \qquad 0 \le k(\mathbf{x}) \le p-2$$

Then $k(\mathbf{x})$ is $(\mod(p-1))$ a linear function on Γ_m , and $\mathbf{x} \in \Gamma_m^*$ if and only if $\frac{1}{2}(p-1) \mid k(\mathbf{x})$. Put

$$k = \gcd(k(\mathbf{b}_0), ..., k(\mathbf{b}_{t-2})),$$

and compute (by the euclidean algorithm) a basis $\mathbf{b}'_1, ..., \mathbf{b}'_{t-2}$, \mathbf{b}'_0 of Γ_m such that $k(\mathbf{b}'_0) = k$. Put for i = 1, ..., t-2,

$$\gamma_i \equiv k(\mathbf{b}'_i)/k \pmod{(p-1)/2}, \qquad |\gamma_i| \leq (p-1)/4,$$

 $\mathbf{b}'_i = \mathbf{b}'_i - \gamma_i \mathbf{b}'_0.$

Then $k(\mathbf{b}_i^*) \equiv k(\mathbf{b}_i') - \gamma_i k(\mathbf{b}_0') \equiv 0 \pmod{(p-1)/2}$ (i = 1, ..., t-2). Put

$$\gamma_0 = \text{lcm}(k, (p-1)/2)/k$$

which is the smallest positive integer such that $\gamma_0 k \equiv 0 \pmod{(p-1)/2}$. Every $\mathbf{x} \in \Gamma_m$ can be written as

$$\mathbf{x} = y_1 \mathbf{b}_1^* + \cdots + y_{t-2} \mathbf{b}_{t-2}^* + y_0 \mathbf{b}_0', \qquad y_i \in \mathbb{Z},$$

since $\mathbf{b}_1^*, \dots, \mathbf{b}_{t-2}^*, \mathbf{b}_0'$ is a basis of Γ_m . Now,

$$k(\mathbf{x}) \equiv y_0 k \pmod{(p-1)/2}.$$

So $\mathbf{x} \in \Gamma_m^*$ if and only if $\gamma_0 \mid y_0$. Hence put

$$\mathbf{b}_0^* = \gamma_0 \mathbf{b}_0',$$

then it follows that $\mathbf{b}_{1}^{*},...,\mathbf{b}_{t-2}^{*}$, \mathbf{b}_{0}^{*} is a basis of Γ_{m}^{*} . In practice it may occur that p_{0} can be chosen such that it is a primitive root (mod p). Then choose $\zeta \equiv p_{0} \pmod{p}$, and it follows from $k(\mathbf{b}_{0}) = 1$ that $\mathbf{b}_{i}^{\prime} = \mathbf{b}_{i} (i = 0,..., t - 2)$. If $p_{i} \equiv p_{0}^{\alpha_{i}} \pmod{p}$, then

$$\gamma_i \equiv \alpha_i + \theta_i^{(m)} \equiv \alpha_i + \sum_{l=0}^{m-1} u_{i,l} \pmod{(p-1)/2} \qquad (i = 1, ..., t-2),$$

$$\gamma_0 = (p-1)/2.$$

So in this special case it is simple to find a basis of Γ_m^* .

For any solution x, y, z of (5.2) put $x/y = p_0^{x_0} \cdots p_{t-2}^{x_{t-2}}$, and consider the point $\mathbf{x} = (x_1, ..., x_{t-2}, x_0) \in \mathbb{Z}^{t-1}$. Suppose that $\operatorname{ord}_p(z) \ge 2$. Then

Hence $\mathbf{x} \in \Gamma_m^*$ for $m \leq \operatorname{ord}_p(z) - m_0$. With this notation we have the following useful lemma:

LEMMA 5.2. Let $m \in \mathbb{N}$ and $X_0 > 0$ be constants such that

$$l(\Gamma_m^*) > (t-1)^{1/2} X_0.$$
(5.6)

Then (5.2) has no solutions x, y, z with

$$m + m_0 \leqslant \operatorname{ord}_p(z) \leqslant m(xyz) \leqslant X_0. \tag{5.7}$$

Proof. Suppose (5.7) holds. By $\operatorname{ord}_{\rho}(z) \ge m + m_0$ we have $\mathbf{x} \in \Gamma_m^*$, $\mathbf{x} \neq \mathbf{0}$. Further, $|x_i| \le m(xyz) \le X_0$ (i = 0, ..., t-2). Hence

$$l(\Gamma_m^*)^2 \leq |\mathbf{x}|^2 = \sum_{i=0}^{t-2} x_i^2 \leq (t-1) X_0^2,$$

which contradicts (5.6).

Suppose that we know that $m(xyz) \leq X_0$. We may expect that $l(\Gamma_m^*)$ is of size $(\det(\Gamma_m^*))^{1/(t-1)}$, which is about $p^{m/(t-1)}$. Thus we may expect that it will suffice to take *m* somewhat larger than $(t-1)\log(\sqrt{t-1} X_0)/\log p$. If (5.6) does not hold then, we may try some larger *m*. If (5.6) holds, then (5.7) yields $\operatorname{ord}_p(z) \leq m + m_0$. We repeat this procedure for $p = p_1, \dots, p_t$. Since (5.2) is invariant under permutation of *x*, *y*, *z* we find a new upper bound for m(xyz), which is of size $m \simeq \log X_0$.

5.C. The Case t = 3

We illustrate the use of the p-adic analogue of the one-dimensional continued fraction algorithm by solving the equation

$$x \pm y = wz, \tag{5.8}$$

where x, y, $z \in \{p^k: p=2, 3, 5, k \in \mathbb{Z}, k \ge 0\}$, and $w \in \mathbb{Z}, |w| \le 10^6$, (w, z) = 1. Put $X = \max_{p=2,3,5} \operatorname{ord}_p(xyz)$. The example at the end of Section 5.A shows that in the case |w| = 1 we have $X < 6.75 \times 10^{41}$. It can be checked without difficulties that the effect of the w with $|w| \le 10^6$ can be neglected, so that for the solutions of (5.8) also $X < 6.75 \times 10^{41}$ holds. Put for p = 2, 3, or 5,

$$x/y = p_0^{x_0} p_1^{x_1}, \qquad z = p^u,$$

such that

$$\theta = -\log_p p_1 / \log_p p_0$$

is a *p*-adic integer. Then define the lattices Γ_m and Γ_m^* as in Section 5.B, so Γ_m is generated by

$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ \theta^{(m)} \end{pmatrix}, \qquad \mathbf{b}_0 = \begin{pmatrix} 0 \\ p^m \end{pmatrix}.$$

For p = 2, 3, we have $\Gamma_m^* = \Gamma_m$, and for p = 5 a basis of Γ_m^* is

$$\mathbf{b}_1^* = \mathbf{b}_1 - \gamma \mathbf{b}_0, \qquad \mathbf{b}_0^* = 2\mathbf{b}_0,$$

where $\gamma = 0$ if $\theta^{(m)}$ is odd, $\gamma = 1$ if $\theta^{(m)}$ is even. Using the algorithm of [23, Sect. 3], we can compute a basis \mathbf{c}_1 , \mathbf{c}_2 of Γ_m^* that is reduced in the sense that

$$\mathbf{c}_1 = \begin{pmatrix} c_{1,1} \\ c_{1,2} \end{pmatrix}$$

has minimal norm $\Phi(\mathbf{c}_1) = \max(|c_{1,1}|, |c_{1,2}|)$ in $\Gamma_m^* \setminus \{\mathbf{0}\}$. We choose p, p_0, p_1 , and m as in the following table, where m is chosen so that p^m is somewhat larger than $(6.75 \times 10^{41})^2$:

р	p_0	p _i	m_0	т	γ	$\Phi(\mathbf{c}_1) >$	u≤	W	$ x_0 \leq$	$ x_1 \leq$
2	3	5	2	297		2 ¹⁴⁸	298	$10^6 \times 2^{298}$	222	152
3	2	5	1	189		394	189	$10^{6} \times 3^{189}$	354	152
5	2	3	1	135	0	5 ⁶⁷	135	$10^6 \times 5^{135}$	370	233

We give the values of $\theta^{(m)}$ in Table V, and the reduced bases of the Γ_m^* in Table VI. From this table we find the lower bounds for $\Phi(\mathbf{c}_1)$ given above.

(<i>p</i> -adic notation: $0.abc = a + b.p + c.p^2 + \cdots$)
theta = $-\log_2 5/\log_2 3 =$ 0.10101 11101 00001 11110 11000 10101 00000 01001 11101 00010 10000 10011 10110 10000 01011 11100 00001 11101 00001 00001 00010 00001 11100 11101 01101 01001 11001 00010 11100 10110 0100 00011 10010 11101 11011 10010 00100 00100 00101 01100 00010 01110 01100 00010 01110 11101 10111 10111 10111 10111 10111 10111 01011 10111 00011 10110 00000 00101 01100 00010 01100 00110 11101 11001 01010 11101 11101 11101 11101 11101 11101 11101 11101 10111 10011 10011 10010 00010 01110 00000 00101 01110 00000 00101 11101 11101 11101 11101 11101 10111 10011 10011 10010 00010 00101 01100 00010 01110 01100 00010 01110 0100 00010 01011 00010 00010 00010 00010 00010 01100 00000 00010 01100 00000 00010 11100 00000 00010 00000 00010 00000 00010 00000 00010 00000 00010 00000 00000 00000 00000 00000 00000 0000
theta = -log ₃ 5/log ₃ 2 = 0.11022 12121 22001 12010 21102 10210 10022 20210 20010 10112 22201 21021 21022 10000 22020 12012 02022 21001 00012 02020 21210 12202 12200 00000 10120 00211 12021 10120 02100 10222 22122 01201 21111 11121 11001 20222 10000 20121 22221
theta = $-\log_5 3/\log_5 2 =$ 0.33002 02003 04411 23120 44012 01011 00044 43204 30340 00023 14333 12413 43420 40302 10202 44104 32433 24432 03021 12311 34044 40231 04112 33230 00242 14232 14400 3110

TABLE V (Section 5C)

p=2(p = 2(base-2 notation)
	/ 10000 11000 11100 10011 11001 01110 10000 10000 10001 01100 10011 01100 10001 00011 01000 01000
	10101 01101 10111 10101 01111 10111 00001 01010 00101 01011 10000 00111 01100 10101
b ₂ =	00000 00001 01111 01110 10110 10010 01011 00010 10101 11000 01111 10101 10111 01111 00011 01010 01010 10101
p=3	p=3 (base-3 notation)
ه، =	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathbf{h}_2 = 0$	-12001 10002 21010
p = 5	
b , = 1	$\mathbf{b}_1 = \begin{pmatrix} -213 & 21041 & 20044 & 21011 & 03000 & 00420 & 40302 & 13144 & 33303 & 42143 & 22021 & 31233 & 42233 & 42314 \\ -140 & 01221 & 40144 & 10323 & 41221 & 10113 & 13410 & 44144 & 41032 & 21131 & 43034 & 40322 & 11323 & 43022 \end{pmatrix}$
$\mathbf{b}_2 = \left(\right)$	$\left(\begin{array}{c} -200 \ \ 20012 \ \ 43403 \ \ 13232 \ \ 12424 \ \ 44102 \ \ 00032 \ \ 42321 \ \ 20012 \ \ 14134 \ \ 22130 \ \ 20103 \ \ 00020 \ \ 13301 \\ -233 \ \ 01424 \ \ 42013 \ \ 24004 \ \ 43244 \ \ 32120 \ \ 30230 \ \ 23141 \ \ 22340 \ \ 40304 \ \ 31113 \ \ 30442 \ \ 33443 \ \ 20012 \right)$

TABLE VI (Section 5C)

DIOPHANTINE EQUATIONS

They are all larger than 6.75×10^{41} . Hence for the solutions of (5.8) we have $u \le m + m_0$, and $|w| z \le W$, as shown in the table above. We now find the new upper bounds for $|x_0|$, $|x_1|$ as follows. If in (5.8) the minus sign holds, then, on supposing that $\min(x, y) > W^{10/9}$, we infer

$$|x - y| = |w| \ z \le W < \min(x, y)^{9/10}$$

By Theorem 4.3a and Table II, the inequality $|x - y| < \min(x, y)^{9/10}$ has no solutions with $\min(x, y) > W$, since $W > 10^{100}$. Hence $\min(x, y) \le W^{10/9}$, and we infer

$$\max(x, y) \leq \min(x, y) + |w| \leq W^{10/9} + W.$$

If in (5.8) the plus sign holds, this inequality follows at once. So now the bounds for $|x_0|$, $|x_1|$ follow from

$$|x_i| \log p_i \leq \log \max(x, y) \leq \log(W^{10/9} + W).$$

We repeat the procedure with m as in the following table:

р	т	γ	$\Phi(\mathbf{c}_1) >$	u≤	W	$ x_0 \leq$	$ x_1 \leq$
2	17		260	18	$10^{6} \times 2^{18}$	31	21
3	13		531	13	$10^{6} \times 3^{13}$	49	21
5	8	1	818	8	$10^{6} \times 5^{8}$	49	31

The numbers are now so small that the computations can be performed by hand. For example, for p = 5 the lattice Γ_8^* is generated by

$$\mathbf{b}_1^* = \begin{pmatrix} 1 \\ -358107 \end{pmatrix}, \qquad \mathbf{b}_0^* = \begin{pmatrix} 0 \\ 781250 \end{pmatrix},$$

and a reduced basis is

$$\mathbf{c}_1 = \begin{pmatrix} -24\\ 818 \end{pmatrix}, \quad \mathbf{c}_2 = \begin{pmatrix} 949\\ 207 \end{pmatrix}.$$

Now, in all three cases, $W^{10/9} < 10^{15}$. On supposing min $(x, y) > 10^{15}$ we infer

$$|x-y| = |w| \ z \le W < 10^{15 \times 9/10} < \min(x, y)^{9/10}$$

By Theorem 4.3a and Table II we see that the inequality $|x-y| < \min(x, y)^{9/10}$ has only two solutions: $(x, y) = (2^{65}, 5^{28}), (2^{84}, 3^{53})$. However, both have $|x-y| > 10^{15 \times 9/10}$. So we infer $\min(x, y) \le 10^{15}$, hence by $\max(x, y) \le 10^{15} + W$ we obtain the bounds for $|x_0|, |x_1|$ as given above.

TABLE VII (Theorem 5.3)

 $p=2, p_0=3, p_1=5$

и	и	sign	$p_{1}^{x_{1}}$	<i>x</i> ₁	$p_0^{x_0}$	<i>x</i> ₀
-610351	4	-1	9765625	10	9	2
606661	4	-1	9765625	10	59049	10
- 476837	9	-1	244140625	12	81	4
- 305153	5	-1	9765625	10	729	6
-48827	3	-1	390625	8	9	2
-48737	3	-1	390625	8	729	6
-41447	3	-1	390625	8	59049	10
- 38927	7	-1	9765625	10	4782969	14
-24409	4	-1	390625	8	81	4
-12207	5	- 1	390625	8	1	0
-6001	6	- 1	390625	8	6561	8
- 1953	3	-1	15625	6	1	0
- 1943	3	- 1	15625	6	81	4
-1133	3	-1	15625	6	6561	8
-931	4	-1	15625	6	729	6
-77	3	-1	625	4	9	2
-61	8	-1	15625	6	9	2
- 39	4	-1	625	4	1	0
-17	5	-1	625	4	81	4
-3	3	- 1	25	2	1	0
-1	4	- 1	25	2	9	2
1	3	1	5	1	3	1
1	7	1	125	3	3	1
1	3	-1	1	0	9	2
1	5	1	5	1	27	3
5	4	-1	1	0	81	4
7	3	-1	25	2	81	4
11	6	-1	25	2	729	6
13	3	-1	625	4	729	6
19	3	1	125	3	27	3
23	4	1	125	3	243	5
31	3	1	5	1	243	5
83	6	1	3125	5	2187	7
91	3	-1	1	0	729	6
137	4	1	5	1	2187	7
173	10	1	5	1	177147	11
197	4	1	3125	5	27	3
205	5	-1	1	0	6561	8
289	3	1	125	3	2187	7
371	4	-1	625	4	6561	8

Table continued

и	и	sign	$p_{1}^{x_{1}}$	<i>x</i> ₁	$P_0^{x_0}$	x_0
391	3	1	3125	5	3	1
421	3	1	3125	5	243	5
619	5	1	125	3	19683	9
817	3	-1	25	2	6561	8
1357	5	-1	15625	6	59049	10
2449	5	1	78125	7	243	5
2461	3	1	5	1	19683	9
2851	3	1	3125	5	19683	9
3689	4	- 1	25	2	59049	10
4147	7	- 1	625	4	531441	12
4883	4	1	78125	7	3	1
6113	4	1	78125	7	19683	9
6533	8	1	78125	7	1594323	13
7303	3	-1	625	4	59049	10
7381	3	- 1	1	0	59049	10
8801	4	- 1	390625	8	531441	12
9769	3	1	78125	7	27	3
10039	3	1	78125	7	2187	7
11267	4	1	3125	5	177147	11
15259	7	1	1953125	9	27	3
22159	3	1	125	3	177147	11
31909	3	í	78125	7	177147	11
33215	4	1	1	0	531441	12
64477	3	— I	15625	6	531441	12
66427	3	-1	25	2	531441	12
66571	5	1	1953125	9	177147	11
99653	4	1	125	3	1594323	13
122207	4	1	1953125	9	2187	7
149467	5	- 1	25	2	4782969	14
199291	3	1	5	1	1594323	13
19968	3	1	3125	5	1594323	13
24414	3	1	1953125	9	3	1
24417	3	1	1953125	9	243	5
24660	3	1	1953125	9	19683	9
29795	4	— i	15625	6	4782969	14
44343	3	1	1953125	9	1594323	13
44850	5	1	3125	5	14348907	15
54904	3	-1	390625	8	4782969	14
59779.	3	-1	625	4	4782969	14
59787	3	-1	1	0	4782969	14
67260	6	- 1	1	0	43046721	16
76324	6	1	48828125	11	19683	9
89680	4	1	5	1	14348907	15

TABLE VII (Theorem 5.3)—Continued

Table continued

·		N 2.1 -	$p = 3, p_0 = 2, p_1 = 5$			
н	u	sign	$p_{1}^{x_{1}}$	x_1	$p_0^{x_0}$	x_0
-120361	4	- 1	9765625	10	16384	14
- 72319	3	-1	1953125	9	512	9
14467	3	-1	390625	8	16	4
- 427	3	-1	15625	6	4096	12
- 37	4	-1	3125	5	128	7
-23	3	-1	625	4	4	2
1	3	1	25	2	2	1
1	3	-1	5	1	32	5
7	3	1	125	3	64	6
11	5	1	625	4	2048	11
19	3	1	1	0	512	9
37	3	-1	25	2	1024	10
193	4	1	15625	6	8	3
403	4	-1	125	3	32768	15
607	3	1	5	1	16384	14
1961	3	-1	78125	7	131072	17
2543	3	1	3125	5	65536	16
2903	3	1	78125	7	256	8
6473	4	1	25	2	524288	19
9709	3	-1	1	0	262144	18
11507	6	-1	5	1	8388608	23
14771	3	1	390625	8	8192	13
15653	5	-1	390625	8	4194304	22
22327	7	1	48828125	11	1024	10
27349	4	1	1953125	9	262144	18
38813	3	-1	625	4	1048576	20
72338	3	1	1953125	9	1	0
78251	3	1	15625	6	2097152	21
361691	3	1	9765625	10	32	5
621383	3	1	125	3	16777216	24
672379	3	1	9765625	10	8388608	23
829469	4	1	78125	7	67108864	26
<u></u>			$p = 5, p_0 = 2, p_1 = 3$			
и	и	sign	$p_{1}^{x_{1}}$	<i>x</i> ₁	$p_0^{x_0}$	<i>x</i> ₀
- 344341	3	-1	43046721	16	4096	12
- 114791	3	-1	14348907	15	32	5
1	3	-1	3	1	128	7
53	3	1	6561	8	64	6
131	3	-1	9	2	16384	14
223	3	1	19683	9	8192	13
				10		20
				3		21
8861 16777	3 3 3	1 -1	19683 59049 27)	10	1048576 10

TABLE VII (Theorem 5.3)—Continued

Those bounds are small enough to admit enumeration of the remaining cases. Thus we obtain the following result.

THEOREM 5.3. The diophantine equation

$$x \pm y = wz$$

where $x = p_0^{x_0}$, $y = p_1^{x_1}$, $z = p^u$, $(p, p_0, p_1) = (2, 3, 5)$, (3, 2, 5), or (5, 2, 3), x_0 , x_1 , u are nonnegative integers, $w \in \mathbb{Z}$, $|w| \le 10^6$, and $p \nmid w$ has exactly 291 solutions for p = 2, 412 solutions for p = 3, and 570 solutions for p = 5. In Table VII all solutions with $u \ge 3$ are given.

The computer calculations for the proof of this theorem took 3 sec.

5.D. The Case $t \ge 4$

In this section we present an elaborate example of the use of the L^3 -BRA for solving an equation of type (5.2) in the multi-dimensional case. Let S be the set of positive integers composed of the primes 2, 3, 5, 7, 11, 13 only. In the example at the end of Section 5.A. we have seen that the solutions x, y, $z \in S$ of (5.2) satisfy $m(xyz) < 3.37 \times 10^{73}$. We show how to reduce this bound, and thus we are able to find all solutions. With the notation of Section 5.B we choose the following parameters:

p	p_0	<i>p</i> ₁	p_2	<i>p</i> ₃	<i>p</i> ₄	m_0	т	γo	γ ₁	γ ₂	¥ 3	Y4
2	3	5	7	11	13	2	1320					
3	2	5	7	11	13	1	840					
5	2	3	7	11	13	1	600	2	1	0	0	1
7	3	2	5	11	13	1	480	3	0	0	-1	ł
11	2	3	5	7	13	1	360	5	-2	-1	2	0
13	2	3	5	7	11	1	360	6	3	1	-2	1

We computed the six values of the $\theta_i^{(m)}$ (i = 1, 2, 3, 4), and the reduced bases of the six lattices Γ_m^* . Thus we obtained

р	$l(\Gamma_m *) \ge \mathbf{c}_1 /4 >$	$\operatorname{ord}_p(xyz) \leq$
2	6.34 × 10 ⁷⁹	1321
3	2.50×10^{79}	840
5	2.02×10^{83}	600
7	2.39×10^{80}	480
11	2.28×10^{74}	360
13	4.23×10^{79}	360

These lower bounds for $l(\Gamma_m^*)$ are all larger than $\sqrt{5} \times 3.37 \times 10^{73}$. So we may apply Lemma 5.2 with $X_0 = 3.37 \times 10^{73}$, which is the theoretical upper bound for m(xyz). For every p we thus find $\operatorname{ord}_p(z) \leq m + m_0$. Since Eq. (5.2) is invariant under permutations of x, y, z, we even have $\operatorname{ord}_p(xyz) \leq m + m_0$, as shown in the above table. Hence $m(xyz) \leq 1321$.

We repeated the procedure with $X_0 = 1321$ and *m* as in the following table. After computing the reduced bases of the six lattices Γ_m^* we found the following data (Note that in all cases $l(\Gamma_m^*) \ge \sqrt{5} \times 1321$.)

р	т	γo	γ ₁	γ ₂	Y3	¥4	$l(\Gamma_m^*)>$	$\operatorname{ord}_p(xyz) \leq$
2	77						8342	78
3	49						9026	49
5	35	2	0	1	1	0	22325	35
7	28	3	0	-1	1	0	14403	28
11	21	5	1	1	1	-2	5162	21
13	21	6	0	0	1	2	14779	21

Hence $m(xyz) \leq 78$. Next, we repeated the procedure with $X_0 = 78$, and m as in the following table. We found

p	m	γo	γ1	γ ₂	γ 3	Y4	$l(\Gamma_m^*)>$	$\operatorname{ord}_p(xyz) \leqslant$
2	55						364	56
3	35						301	35
5	25	2	1	1	1	0	622	25
7	20	3	1	1	1	0	693	20
11	15	5	1	2	-2	-2	192	15
13	15	6	1	0	3	2	658	15

Hence $m(xyz) \leq 56$.

To find the solutions of (5.2) with $\operatorname{ord}_p(xyz)$ below the bounds given in the above table, we followed the following procedure. Suppose that we are at a certain moment interested in finding the solutions with $\operatorname{ord}_p(xyz) \leq f(p)$, where f(p) is given for p = 2,..., 13. Choose a p and an $m < f(p) - m_0$, and consider the lattice Γ_m^* . If a solution x, y, z of (5.2) exists with $\operatorname{ord}_p(z) \geq m + m_0$, then the vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_4 \\ x_0 \end{pmatrix}$$

n	m	p	n	т	p
	7	5		44	
		5	_	28	3
6	6 5	5 5	_	20	2 3 5
_	7	7		16	7
_	6	7	_	16 12	11
1	5	7	-	12	13
4	4	7	-	33	13 2 3
	5	11	_	21	3
1	4	11	-	15	5
4	3	11	_	12	7
_	5	13	-	9	11
-	4	13	_	9	13
1	3	13 2 2 2 2 2 2 2 2 2 2	-	22	13 2
2	10	2	_	14	3
3	9	2		10	5
6	8	2	-	8	7
15	7	2	-	6	11
16	6	2	-	6	13 2 2
26	5	2	-	21	2
31	4	2		20	2
44	3	2 3 3 3 3 3 5 5 5 5		19	2 2 2 2 2 2 2 2 2 2
5	6	3	-	18	2
8	5	3	-	17	2
16	4	3	_	16	2
35	3	3	-	15	2
54	2	3	_	14	2
87	1	3	1	13	2
1	4	5	2	12	2 2
5	3 2	5	2	11	2
18	2	5	-	13	3
36	1	5 7		12	3
-	3	7	_	11	3
6	2	7	1	10	3
18	1	7	1	9	3
1	2	11	1	8	3
8	1	11 13	6	7	3 3 5
-	2	13		9	5
4	1	13	_	8	5

TABLE VIII (Section 5D)

(n = number of solutions found.)

with $x_i = \operatorname{ord}_{p_i}(x/y)$ (i = 0, ..., 4) is in the lattice. Its length is bounded by $(f(p_0)^2 + \cdots + f(p_4)^2)^{1/2}$. All vectors in Γ_m^* with length below this bound can be computed by the algorithm of Fincke and Pohst [7] (we omit details). Then all solutions of (5.2) corresponding to lattice points can be selected. Then we replace f(p) by $m + m_0 - 1$, and we may repeat the procedure for newly chosen p, m.

We performed this procedure, starting with the bounds for $\operatorname{ord}_p(xyz)$ given in the above table for f(p), and with p, m as in Table VIII. At the end we have f(2) = 4, f(p) = 1 for p = 3,..., 13. The remaining solutions can be found by hand. Thus we obtained the following result.

THEOREM 5.4. The diophantine equation

$$x + y = z$$

in x, y, $z \in S = \{2^{x_1} \cdots 13^{x_6}: x_i \in \mathbb{Z}, x_i \ge 0 \ (i = 1, ..., 6)\}$ with (x, y) = 1 and $x \le y$, has exactly 545 solutions. Of them, 514 satisfy

ord₂(xyz) ≤ 12 , ord₃(xyz) ≤ 7 , ord₅(xyz) ≤ 5 , ord₇(xyz) ≤ 4 , ord₁₁(xyz) ≤ 3 , ord₁₃(xyz) ≤ 3 .

The remaining 31 solutions are given in Table IX.

The computer calculations for the proof of this theorem took 2856 sec, of which 2830 sec were used for the first reduction step. In this first step, we applied the L^3 -BRA in 12 steps (cf. Sect. 3), which costed on average about 400 sec. The remaining 430 sec were mainly used for the computation of the 24 $\theta_i^{(m)}$'s. Full numerical details can be obtained from the author.

5.E. Examples Related to the Oesterlé-Masser Conjecture

Let x, y, z be positive integers. Put

$$G = \prod_{\substack{p \mid xyz \\ p \text{ prime}}} p.$$

For all x, y, z with (x, y) = 1 and

x + y = z

we define

$$c(x, y, z) = \log z / \log G.$$

																						1
x	ž	tą	b = d	ب 2	$\operatorname{ord}_{p}(x)$	()	-	1 13		p=2	$\operatorname{ord}_p(y)$ 3 5	و()») ع	7	11	13	4	p=2	$\operatorname{ord}_p(z)$ 3 5	5	٢	11	13
1040	4160	6561								9	c	-	c	C	-		c	×	-	6	c	-
875	6561	7436							_	0) oc	0	0	0	0		2	0	0	0		2
1183	6561	7744	-	0						0	×	0	0	0	С		9	0	0	0	0	0
1125	8192	9317	-			0			-	13	0	0	0	0	0		0	0	0		m	0
1183	8192	9375	-	_	0	0		0 2		13	0	0	0	0	0		0	-	S	0	0	0
16	14625	14641	,						_	0	2	n	0	0	-		0	0	0	0	4	0
81	14560	14641	-			0			_	5	0	-	-	0	-		0	0	0	0	4	0
1936	13689	15625	•	-+		0		2	_	0	4	0	0	0	C 1		0	0	9	0	0	0
3718	11907	15625			0	0	_	-		0	Ś	0	~1	0	0		0	0	9	0	0	С
5824	9801	15625	1	ç	0	~	_	0		0	4	0	0	2	0		0	0	ę	0	0	0
49	16335	16384	-	0) 0		~	0	_	0	m	1	0	1	0		14	0	0	0	0	0
2695	13689	16384	-	0	0		C ,	_	_	0	4	0	0	0	0		14	0	0	0	0	0
8019	8788	16807	-		-		0	0	-	2	0	0	0	0	ŝ		0	0	0	S	0	0
3584	14641	18225	-		-			0	~	0	0	0	0	4	0		0	9	2	0	0	0
1625	16807	18432	-							0	0	0	Ś	0	0		11	1	0	0	0	0
3993	16807	20800	-	0	_	0		30	_	0	0	0	Ś	0	0		9	0	<u>с</u> і	0	0	
49	28512	28561			-			0	_	ŝ	4	0	0	-	0		0	0	0	0	0	4
12936	15625	28561			-	~			~	0	0	9	0	0	0		0	0	0	0	0	4
22000	6561	28561	-		0	~		0	~	0	x	0	0	0	0		0	0	0	0	0	4
15625	17303	32928			õ	2 C		0	_	0	0	0	C	ŝ			S	-	0	m,	0	0
507	32768	33275	_	C	-) (0		15	0	0	0	0	0		0	0	1	0	Ś	0
10985	41503	52488	-	0	0	-	0	0		0	0	0	m	0	0		m	×	0	0	0	0
10000	49049	59049		4	-	-		~ 0	~	0	0	0	m	-	-		0	10	0	0	0	c
14641	46875	61516		0	-	-			~	0	-	9	0	0	0		()	0	0		Q	с г ,
7168	78125	85293	1	0	-	0		_	0	0	0	5	0	0	0		0	×	0	0	0	
20449	97200	117649		0	-				. .	4	ŝ	2	0	0	0		0	0	0	9	0	0
13	151250	151263		0	-	0					0	4	0	C }	0		0	3	0	Ś	0	0
12005	161051	173056		0	0		4	0	0	0	0	0	0	Ś	0		10	0	0	0	0	~ 1
121	255879	256000		0	-	0		5	~	0	6	0	0	0	-		Ξ	0	m	0	0	0
2197	583443	585640		0	0			0	~	0	Ś	0	4	0	0		m	0	-	0	4	0
91	1771470	1771561		0	0	0	_	0		-	11	-	0	0	0		0	0	0	0	Ŷ	0
																					1	

TABLE IX (Theorem 5.4)

364

B. M. M. DE WEGER

x	У	Ζ	c(x, y, z)
$121 = 11^2$	$48234375 = 3^2 5^6 7^3$	$48234496 = 2^{21}23$	1.62599
1	$4374 = 23^7$	$4375 = 5^{4}7$	1.56789
$343 = 7^3$	$59049 = 3^{10}$	$59392 = 2^{11}29$	1.54708
$198425 = 5^2 7937$	96889010407 = 7 ¹³	$96889208832 = 2^{18}3^713^2$	1.49762
$121 = 11^{2}$	$255879 = 3^{9}13$	$256000 = 2^{11}5^3$	1.48887
37	$32768 = 2^{15}$	$32805 = 3^85$	1.48291
$3200 = 2^7 5^2$	$4823609 = 7^{6}41$	$4826809 = 13^{6}$	1.46192
1	$2400 = 2^5 3 5^2$	$2401 = 7^4$	1.45567
$02021632 = 2^{19}13\ 103$	$1977326743 = 7^{11}$	$2679348375 = 3^{11}5^311^2$	1.45261
1	$512000 = 2^{12}5^3$	$512001 = 3^{5}7^{2}43$	1.44331
1	$19140624 = 2^4 3^7 547$	$19140625 = 5^87^2$	1.43906
$7168 = 2^{10}7$	$78125 = 5^7$	$85293 = 3^813$	1.43501
3	$125 = 5^3$	$128 = 2^7$	1.42657
5	$177147 = 3^{11}$	$177152 = 2^{10}173$	1.41268

TABLE X (Section 5E)

Recently, Oesterlé posed the problem to decide whether there exists an absolute constant C such that c(x, y, z) < C for all x, y, z. Masser conjectured the stronger assertion that $c(x, y, z) < 1 + \varepsilon$, when z exceeds some bound depending on ε only. For a survey of related results and conjectures see Stewart and Tijdeman [19].

It might be interesting to have some empirical results on c(x, y, z), and to search for x, y, z for which it is large. From the preceding sections it may be clear that such x, y, z correspond to relatively short vectors in appropriate approximation lattices. As a byproduct of the proofs of Theorems 4.6 and 5.4 we computed the value of c(x, y, z), corresponding to many short vectors that we came across in performing the algorithm of Fincke and Pohst. All examples that we found with $c(x, y, z) \ge 1.4$ are listed in Table X. Our search was rather unsystematic, so we do not guarantee that this list is complete in any sense. The largest value for c(x, y, z) that occurred is 1.626, which was reached by

$$x = 11^2$$
, $y = 3^2 \times 5^6 \times 7^3$, $z = 2^{21} \times 23$.

These results do not seem to yield any heuristical evidence for the truth or falsity of the above mentioned conjecture.

ACKNOWLEDGMENTS

The author wishes to thank Professor R. Tijdeman and Dr. F. Beukers for their helpful remarks. He was supported by the Netherlands Foundation for Mathematics (SMC) with

financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO). All machine computations were performed on the IBM-3083 computer at the Centraal Reken Instituut of the University of Leiden.

References

- 1. M. K. AGRAWAL, J. H. COATES, D. C. HUNT, AND A. J. VAN DER POORTEN, Elliptic curves of conductor 11, Math. Comput. 35 (1980), 991–1002.
- 2. L. J. ALEX, Diophantine equations related to finite groups, Comm. Algebra 4 (1976), 77-100.
- 3. A. BAKER, "Transcendental Number Theory," Cambridge Univ. Press, London, 1975.
- 4. A. BAKER AND H. DAVENPORT, The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford (2) 20 (1969), 129-137.
- 5. A. J. BRENTJES, "Multi-dimensional Continued Fraction Algorithms," Dissertation, University of Leiden, 1981.
- W. J. ELLISON, "Recipes for Solving Diophantine Problems by Baker's Method," Sém. de Théorie des Nombres, Talence, 1970–1971, exp. No. 11.
- 7. U. FINCKE AND M. POHST, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, *Math. Comput.* 44 (1985), 463–471.
- J. C. LAGARIAS AND A. M. ODLYZKO, Solving low-density subset sum problems, J. Assoc. Comput. Mach. 32 (1985), 229-246.
- 9. A. K. LENSTRA, H. W. LENSTRA JR., AND L. LOVÁSZ, Factoring polynomials with rational coefficients, *Math. Ann.* 261 (1982), 515-534.
- A. K. LENSTRA, "Polynomial-Time Algorithms for the Factorization of Polynomials," Dissertation, University of Amsterdam, 1984.
- 11. K. MAHLER, "Lectures on Diophantine Approximations I, g-adic Numbers and Roth's Theorem," Univ. of Notre Dame Press, Notre Dame, 1961.
- M. MIGNOTTE AND M. WALDSCHMIDT, Linear forms in two logarithms and Schneider's method, Math. Ann. 231 (1978), 241-267.
- A. M. ODLYZKO AND H. J. J. TE RIELE, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357 (1985), 138-160.
- A. PETHÖ AND B. M. M. DE WEGER, Products of prime powers in binary recurrence sequences, Part I: the hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, *Math. Comput.* 47 (1986), 713–727.
- A. J. VAN DER POORTEN, Linear forms in logarithms in the p-adic case, in "Transcendence Theory: Advances and Applications" (A. Baker and D. W. Masser, Eds.), Chap. 2, Academic Press, New York, 1977.
- H. RUMSEY AND E. C. POSNER, On a class of exponential equations, Proc. Amer. Math. Soc. 15 (1964), 974–978.
- 17. A. SCHINZEL, On two theorems of Gelfond and some of their applications, Acta Arith. 13 (1967), 177-236.
- 18. T. N. SHOREY AND R. TIJDEMAN, "Exponential Diophantine Equations," Cambridge Univ. Press, London, 1986.
- C. L. STEWART AND R. TIJDEMAN, On the Oesterlé-Masser conjecture, Monatsh. Math. 102 (1986), 251-257.
- R. J. STROEKER AND R. TIJDEMAN, Diophantine equations, in "Computational Methods in Number Theory" (H. W. Lenstra, Jr. and R. Tijdeman, Eds.), Part II, MC Tract No. 155, pp. 321–369, Mathematisch Centrum, Amsterdam, 1982.
- S. S. WAGSTAFF, Solution of Nathanson's exponential congruence, Math. Comput. 33 (1979), 1097-1100.

- 22. M. WALDSCHMIDT, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283.
- 23. B. M. M. DE WEGER, Approximation lattices of p-adic numbers, J. Number Theory 24 (1986), 70-88.
- B. M. M. DE WEGER, "Products of prime powers in binary recurrence sequences. Part II: The elliptic case, with an application to a mixed quadratic-exponential equation, *Math. Comput.* 47 (1986), 729-739.